K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2018

xin bài này , 5 phút sau làm

1 tháng 7 2018

nếu ai trả lời trc tao , thì thằng đó tự đăng tự tl 

30 tháng 6 2017

Thiếu đề ^^

30 tháng 6 2017

Bài này phải cho a+b+c= Q ( Q là 1 STN nào đấy ^^ )

10 tháng 4 2018

Áp dụng BĐT Cauchy cho 3 số không âm ta có

\(a^3+1+1\ge3\sqrt[3]{a^3.1.1}=3a\)\(b^3+1+1\ge3\sqrt[3]{b^3.1.1}=3b\)\(c^3+1+1\ge3\sqrt[3]{c^3.1.1}=3c\)cộng các vế với nhau ta đc

\(a^3+b^3+c^3+6\ge3\left(a+b+c\right)\)<=> \(a^3+b^3+c^3+6\ge9\)

<=> \(a^3+b^3+c^3\ge3\)

<=> A ≥ 3

<=> Min A=3 dấu "=" xảy ra khi a=b=c=1

6 tháng 3 2020

Áp dụng BĐT Cô-si dạng Engel,ta có :

\(P=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2\)

\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\Rightarrow\sqrt{3\left(a^2+b^2+c^2\right)}\ge a+b+c\)

\(\Rightarrow6=a+b+c+ab+bc+ac\le\sqrt{3\left(a^2+b^2+c^2\right)}+a^2+b^2+c^2\)

Đặt \(\sqrt{3\left(a^2+b^2+c^2\right)}=t\Rightarrow a^2+b^2+c^2=\frac{t^2}{3}\)

\(\Rightarrow t+\frac{t^2}{3}\ge6\Leftrightarrow3t+t^2-18\ge0\Leftrightarrow\left(t-3\right)\left(t+6\right)\ge0\)

\(\Rightarrow t-3\ge0\Rightarrow t\ge3\)( vì t + 6 > 0 )

\(\Rightarrow P\ge a^2+b^2+c^2=\frac{t^2}{3}\ge3\)

Vậy GTNN của P là 3 khi a = b = c = 1

17 tháng 8 2020

Vì \(a,b,c>0\) nên theo BĐT Svacxo ta có :

\(A=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2.\left(a+b+c\right)}=\frac{a+b+c}{2}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Vậy \(A_{min}=\frac{3}{2}\)khi \(a=b=c=1\)

2 tháng 10 2023

a) Sửa đề: Tìm GTNN

A = |2x - 1| - 4

Ta có:

|2x - 1| ≥ 0 với mọi x ∈ R

⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R

Vậy GTNN của A là -4 khi x = 1/2

b) B = 1,5 - |2 - x|

Ta có:

|2 - x| ≥ 0 với mọi x ∈ R

⇒ -|2 - x| ≤ 0 với mọi x ∈ R

⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R

Vậy GTLN của B là 1,5 khi x = 2

c) C = |x - 3| ≥ 0 với mọi x ∈ R

Vậy GTNM của C là 0 khi x = 3

d) D = 10 - 4|x - 2|

Ta có:

|x - 2| ≥ 0 với mọi x ∈ R

⇒ 4|x - 2| ≥ 0 với mọi x ∈ R

⇒ -4|x - 2| ≤ 0 với mọi x ∈ R

⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R

Vậy GTLN của D là 10 khi x = 2

7 tháng 7 2018

Ta có \(a^3+1+1\ge3\sqrt[3]{a.1.1}=3a\Leftrightarrow a^3\ge3a-2\) (Cosi)

Tương tự \(b^3\ge3b-2;c^3\ge3c-2\)

Cộng lại ta được  \(a^3+b^3+c^3\ge3\left(a+b+c\right)-6\)

Lại có \(a^3+b^3+c^3\ge3abc\) (Cosi)

Do đó \(2\left(a^3+b^3+c^3\right)\ge3\left(a+b+c+abc\right)-6=3.4-6=6\)

\(\Rightarrow a^3+b^3+c^3\ge3\) có GTNN là 3

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)