Cho \(x\le4\).Tìm giá trị nhỏ nhất của biểu thức \(A=x^2\left(2-x\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Delta'=\left(m-1\right)^2+m^3-\left(m+1\right)^2=m^3-4m\ge0\) \(\Rightarrow\left[{}\begin{matrix}m\ge2\\-2\le m\le0\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m^3+\left(m+1\right)^2\end{matrix}\right.\)
Do \(x_1+x_2\le4\Rightarrow m-1\le2\Rightarrow m\le3\)
\(\Rightarrow\left[{}\begin{matrix}2\le m\le3\\-2\le m\le0\end{matrix}\right.\)
\(P=x_1^3+x_2^3+3x_1x_2\left(x_1+x_2\right)+8x_1x_2\)
\(=\left(x_1+x_2\right)^3+8x_1x_2\)
\(=8\left(m-1\right)^3+8\left[-m^3+\left(m+1\right)^2\right]\)
\(=8\left(5m-2m^2\right)\)
\(P=8\left(5m-2m^2-2+2\right)=16-8\left(m-2\right)\left(2m-1\right)\le16\)
\(P_{max}=16\) khi \(m=2\)
\(P=8\left(5m-2m^2+18-18\right)=8\left(9-2m\right)\left(m+2\right)-144\ge-144\)
\(P_{min}=-144\) khi \(m=-2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1:
ĐKXĐ: \(x\notin\left\{3;-2;1\right\}\)
\(A=\left(\dfrac{x\left(x+2\right)-x+1}{\left(x-3\right)\left(x+2\right)}\right):\left(\dfrac{x\left(x-3\right)+5x+1}{\left(x+2\right)\left(x-3\right)}\right)\)
\(=\dfrac{x^2+2x-x+1}{\left(x-3\right)\left(x+2\right)}\cdot\dfrac{\left(x+2\right)\left(x-3\right)}{x^2-3x+5x+1}\)
\(=\dfrac{x^2+x+1}{\left(x-1\right)^2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) -Thay \(x=a\) vào K ta được:
\(K=\dfrac{16}{\left(a^2+2\right)+4}\)
-Thay \(x=-a\) vào K ta được:
\(K=\dfrac{16}{\left(\left(-a\right)^2+2\right)+4}=\dfrac{16}{\left(a^2+2\right)+4}\)
-Vậy tại x=a và x=-a (a∈R) thì 2 giá trị của K bằng nhau.
b) -Không có GTNN, chỉ có GTLN:
\(K=\dfrac{16}{\left(x^2+2\right)^2+4}\le\dfrac{16}{2^2+4}=2\)
\(K_{max}=2\Leftrightarrow x=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Ta có: $A=x^2+\frac{1}{y(x-y)}$. Đặt $x-y=a$ với $a>0$ thì áp dụng BĐT AM-GM ta có:
$A=(a+y)^2+\frac{1}{ay}\geq 4ay+\frac{1}{ay}\geq 2\sqrt{4ay.\frac{1}{ay}}=4$
Vậy $A_{\min}=4$ khi $x=\sqrt{2}; y=\frac{1}{\sqrt{2}}$
GTNN = 0
Xét \(0\le x\le3\). Viết A dưới dạng \(A=4.\frac{x}{2}.\frac{x}{2}.\left(3-x\right)\)
- Áp dụng bđt Cauchy 3 số cho 3 số không âm \(\frac{x}{2};\frac{x}{2};\left(3-x\right)\)ta được :\(\frac{x}{2}.\frac{x}{2}.\left(3-x\right)\le\left(\frac{\frac{x}{2}+\frac{x}{2}+3-x}{3}\right)^2=1\)
Do đó \(A\le4\left(1\right)\)
Xét x > 3 , khi đó \(A\le0\left(2\right)\). So sánh (1) và (2) ta đi đến kết luận \(maxA=4\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=3-x\\x\ge0\end{cases}\Leftrightarrow x=2}\)