Cho A=1/2×3/4×5/6.....×79/80. Chứng minh A>1/13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{79}{80}\)
\(A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{80}{81}\)
\(A^2< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{79}{80}.\frac{80}{81}\)
\(A^2< \frac{1}{81}=\left(\frac{1}{9}\right)^2\)
=> \(A< \frac{1}{9}\left(đpcm\right)\)
Ta có:
\(\frac{1}{2}\)= 1- \(\frac{1}{2}\) < 1- \(\frac{1}{3}\)=\(\frac{2}{3}\)
\(\frac{3}{4}\)= 1- \(\frac{1}{4}\) < 1- \(\frac{1}{5}\) = \(\frac{4}{5}\)
...
\(\frac{79}{80}\) = 1- \(\frac{1}{80}\) < 1- \(\frac{1}{81}\)= \(\frac{80}{81}\)
Từ trên, ta có:
A= \(\frac{1}{2}\). \(\frac{3}{4}\). \(\frac{5}{6}\)...\(\frac{79}{80}\)< \(\frac{2}{3}\). \(\frac{4}{5}\). \(\frac{6}{7}\)...\(\frac{80}{81}\)
A2 < \(\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{80}{81}\right)\). \(\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{79}{80}\right)\)
A2 < \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{79}{80}.\frac{80}{81}\)
A2 <\(\frac{1.\left(2.3.4...79.80\right)}{\left(2.3.4...79.80\right).81}\)
A2 < \(\frac{1}{81}\) =\(\left(\frac{1}{9}\right)^2\)
A < \(\frac{1}{9}\) (đpcm)
Vậy A< \(\frac{1}{9}\)
A = \(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}.....\dfrac{79}{80}\)
=> A1 < \(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{5}{6}.....\dfrac{80}{81}\)
=> A2 < A.A1 = \(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}....\dfrac{79}{80}.\dfrac{80}{81}=\dfrac{1}{81}=\left(\dfrac{1}{9}\right)^2\)
=> A < \(\dfrac{1}{9}.\)
Lời giải:
Gọi tổng trên là $A$. Ta có:
\(2A>\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\)
\(2A>\frac{\sqrt{2}-1}{(\sqrt{1}+\sqrt{2})(\sqrt{2}-1)}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{2}+\sqrt{3})(\sqrt{3}-\sqrt{2})}+\frac{\sqrt{4}-\sqrt{3}}{(\sqrt{3}+\sqrt{4})(\sqrt{4}-\sqrt{3})}+...+\frac{\sqrt{81}-\sqrt{80}}{(\sqrt{80}+\sqrt{81})(\sqrt{81}-\sqrt{80})}\)
\(2A>(\sqrt{2}-1)+(\sqrt{3}-\sqrt{2})+(\sqrt{4}-\sqrt{3})+....+(\sqrt{81}-\sqrt{80})\)
\(2A>\sqrt{81}-1=8\Rightarrow A>4\)
Ta có đpcm.