Cho a,b là số nguyên khác 0.Chứng minh rằng a/b+b/a >_ 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(X=\frac{a+1}{b}+\frac{b+1}{a}=\frac{a^2+b^2+a+b}{ab}\)
Vì X là số tự nhiên => \(a^2+b^2+a+b⋮ab\)
Vì d=UCLN(a,b) => \(a⋮d\) và \(b⋮d\)=> \(ab⋮d^2\)
=> \(a^2+b^2+a+b⋮d^2\)
Lại vì \(a⋮d\) và \(b⋮d\) => \(a^2⋮d^2\) và \(b^2⋮d^2\) => \(a^2+b^2⋮d^2\)
=> \(a+b⋮d^2\)
=> \(a+b\ge d^2\) (đpcm)
1
\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{b+a+c}+\frac{c+b}{a+b+c}=2\)
=> M ko là số tự nhiên
2
\(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
Do \(a^2+b^2+c^2\ge0\Rightarrow ab+bc+ca\le0\)
3
\(\left(x+y\right)\cdot35=\left(x-y\right)\cdot2010=xy\cdot12\)
\(\Rightarrow35x+35y=2010x-2010y\)
\(\Rightarrow35-2010x=2010y-35y\)
\(\Rightarrow-175x=-245y\)
\(\Rightarrow\frac{x}{y}=\frac{245}{175}=\frac{7}{5}\)
\(\Rightarrow\frac{x}{7}=\frac{y}{5}\)
Đặt \(\frac{x}{7}=\frac{y}{5}=k\)
\(\Rightarrow x=7k;y=5k\)
\(\Rightarrow\left(5k+7k\right)\cdot35=35k^2\cdot12\)
\(\Rightarrow k=k^2\Rightarrow k=1\left(k\ne0\right)\)
Vậy \(x=7;y=5\)
bài 2 chưa thuyết phục lắm, nếu \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\) thì \(ab+bc+ca\ge0\) vẫn đúng, lẽ ra phải là \(ab+bc+ca=-\frac{\left(a^2+b^2+c^2\right)}{2}\le0\) *3*
* Trường hợp 1 :
Nếu a=b
=> \(\frac{a}{a}\)+ \(\frac{b}{b}\)= 1 + 1 = 2 ( 1)
* Trường hợp 2 :
Nếu a < b , đặt b = a+ m
Ta có : M = \(\frac{a}{a+m}\) + \(\frac{a+m}{a}\)= \(\frac{a}{a+m}\)+ \(\frac{m}{a}\)+ \(\frac{a}{a}\)
= \(\frac{a}{a+m}\)+ \(\frac{m}{a}\)+ 1 > \(\frac{a}{a+m}\)+ \(\frac{m}{a+m}\)+ 1
=> M > \(\frac{a+m}{a+m}\)+ 1
=> M > 1 + 1
=> M > 2 ( 2)
* Trường hợp 3 :
Nếu a > b , đặt a = b + n
Ta có : M = \(\frac{b+n}{b}\)+ \(\frac{b}{b+n}\)= \(\frac{b}{b}\)+ \(\frac{n}{b}\)+ \(\frac{b}{b+n}\)
= 1 + \(\frac{n}{b}\)+ \(\frac{b}{b+n}\)> 1 + \(\frac{n}{b+n}\)+ \(\frac{b}{b+n}\)
=> M > 1 + \(\frac{n+b}{b+n}\)
=> M > 1+1
=> M > 2 (3)
Từ (1) ; (2) ; (3)
=> M \(\ge\)2
Vậy M \(\ge\)2