tìm N thuộc Z để:\(\frac{n^3-2n^2+3}{n-2}\) là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{n^2+2n+2}{n+3}=\frac{\left(n^2+6n+9\right)-4\left(n+3\right)+5}{n+3}=\frac{\left(n+3\right)^2-4\left(n+3\right)+5}{n+3}=\left(n+3\right)-4+\frac{5}{n+3}\)
Để p/s trên là số nguyên thì (n+3) thuộc Ư(5)
Bạn tự liệt kê
\(\frac{n^3+2n+2}{n+3}=\frac{\left(n^3+9n^2+27n+27\right)-9\left(n^2+6n+9\right)+29\left(n+3\right)-31}{n+3}\)
\(=\frac{\left(n+3\right)^3-9\left(n+3\right)^2+29\left(n+3\right)-31}{n+3}\)
\(=\left(n+3\right)^2-9\left(n+3\right)+29-\frac{31}{n+3}\)
Để phân số trên nhận giá trị nguyên thì \(\left(n+3\right)\inƯ\left(31\right)\)
Từ đó bạn liệt kê ra nhé :)
Giải:
Để \(\frac{n^3+2n+2}{n+3}\in Z\Rightarrow n^3+2n+2⋮n+3\Rightarrow n^3⋮n+3;2n+2⋮n+3\)
Ta có:
\(n^3⋮n+3\)
\(n^3+3-3⋮n+3\)
\(\Rightarrow-3⋮n+3\)
\(\Rightarrow n+3\in\left\{\pm1;\pm3\right\}\)
+) \(n+3=1\Rightarrow n=-2\)
+) \(n+3=-1\Rightarrow n=-4\)
+) \(n+3=3\Rightarrow n=0\)
+) \(n+3=-3\Rightarrow n=-6\)
Ta có:
\(2n+2⋮n+3\)
\(\Rightarrow2n+6-4⋮n+3\)
\(\Rightarrow n\left(n+3\right)-4⋮n+3\)
\(\Rightarrow-4⋮n+3\)
\(\Rightarrow n+3\in\left\{\pm1;\pm2;\pm4\right\}\)
Vì phần trên ta đã tính kết quả \(n+3=\pm1\) nên ta chỉ xét \(n+3=\pm2\) và\(n+3=\pm4\)
+) \(n+3=2\Rightarrow n=-1\)
+) \(n+3=-2\Rightarrow n=-5\)
+) \(n+3=4\Rightarrow n=1\)
+) \(n+3=-4\Rightarrow n=-7\)
Vậy \(n\in\left\{-2;-4;0;-6;-1;-5;1;-7\right\}\)
Bạn xem kĩ xem có đúng ko nhé
\(\frac{n^2-2n-1}{n-3}\)
\(=\frac{n\left(n-3\right)+n-3+2}{n-3}\)
\(=n+1+\frac{2}{n-3}\)là số nguyên khi và chỉ khi n - 3 \(\in\)ước nguyên của 2.
n - 3 \(\in\){ -2 ; -1 ; 1 ; 2 }
n \(\in\){ 1 ; 2 ; 4 ; 5 }
Đặt \(A=\frac{n^2+2n+2}{n+3}\)
\(A=\frac{n^2+3n-n-3+5}{n+3}=\frac{n.\left(n+3\right)-\left(n+3\right)+5}{n+3}=\frac{\left(n+3\right).\left(n-1\right)+5}{n+3}\)
\(=\frac{\left(n+3\right).\left(n-1\right)}{n+3}+\frac{5}{n+3}=n-1+\frac{5}{n+3}\)
Để A nguyên thì \(\frac{5}{n+3}\) nguyên
=> \(5⋮n+3\)
=> \(n+3\inƯ\left(5\right)\)
=> \(n+3\in\left\{1;-1;5;-5\right\}\)
=> \(n\in\left\{-2;-4;2;-8\right\}\)
Vậy \(n\in\left\{-2;-4;2;-8\right\}\) thỏa mãn đề bài
Ta có 3 là số lẻ và 2n-2 là số chẵn
=> ƯCLN (3;2n-2)=1
=> Không có giá trị n để \(\frac{3}{2n-2}\)là số nguyên
=> \(n\in\varnothing\)
a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số
b) Để A nguyên thì 2n - 5 chia hết cho n + 3
=> 2n + 6 - 11 chia hết cho n + 3
=> 2.(n + 3) - 11 chia hết cho n + 3
Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3
=> n + 3 thuộc {1 ; -1; 11; -11}
=> n thuộc {-2; -4; 8; -14}
c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3
=> 2n - 5 chia hết cho d; n + 3 chia hết cho d
=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d
=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d
=> (2n + 6) - (2n - 5) chia hết cho d
=> 2n + 6 - 2n + 5 chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1 ; 11}
Mà d nguyên tố => d = 11
Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11
=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11
=> 2.(n + 3) chia hết cho 11
Do (2,11)=1 => n + 3 chia hết cho 11
=> n = 11k + 8 ( k thuộc Z)
Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được
Với n khác 11k + 8 (k thuộc Z) thì A tối giản
a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số
b) Để A nguyên thì 2n - 5 chia hết cho n + 3
=> 2n + 6 - 11 chia hết cho n + 3
=> 2.(n + 3) - 11 chia hết cho n + 3
Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3
=> n + 3 thuộc {1 ; -1; 11; -11}
=> n thuộc {-2; -4; 8; -14}
c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3
=> 2n - 5 chia hết cho d; n + 3 chia hết cho d
=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d
=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d
=> (2n + 6) - (2n - 5) chia hết cho d
=> 2n + 6 - 2n + 5 chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1 ; 11}
Mà d nguyên tố => d = 11
Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11
=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11
=> 2.(n + 3) chia hết cho 11
Do (2,11)=1 => n + 3 chia hết cho 11
=> n = 11k + 8 ( k thuộc Z)
Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được
Với n khác 11k + 8 (k thuộc Z) thì A tối giản
Để 2n+5/n+3 là số nguyên,2n+5 phải chia hết cho n+3
Ta có:2n+5=2n+6-1=2(n+3)-1.Vì 2(n+3) chia hết cho n+3=>1 phải chia hết cho n+3
=>n+3 thuộc Ư(1)={ +1}
TH1:n+3=1=>n=1-3= -2
TH2:n+3= -1=>n= -1-3= -4.Vậy n= -2 hoặc n= -4
Học tốt!!!!!!!!!!!!