Chứng minh nếu (a +2b) chia hết cho 7 thì abb chia hết cho 7.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overline{abb}=100xa+11xb=98xa+7xb+2x\left(a+2xb\right)\)
Ta có
\(98xa+7xb⋮7\)
\(a+2xb⋮7\Rightarrow2\left(a+2xb\right)⋮7\)
\(\Rightarrow\overline{abb}⋮7\)
Ta có: \(\overline{abb}=100a+10b+10b=100a+11b\)
=98a+2a +7b+4b
Vì \(\text{a+2b }⋮7\) nên \(\text{2(a+2b)}⋮7\) hay \(2a+4b⋮7\)
Lại có \(98a⋮7\left(vì98⋮7\right)\)và \(7b⋮7\) nên \(\text{98a+2a +7b+4b }⋮7\) hay \(\overline{abb}⋮7\)
ta co: abb=100a+10b+b
=>99a+(a+2b)+9b
ma (a+2b) chia hết cho 7=>99a+9b chi het cho 7
=>abb chia het cho 7
Ta có: a+2b chia hết cho 7
=>100(a+2b) chia hết cho 7
=>100a+200b chia hết cho 7
=>100a+200b-189b chia hết cho 7 (do 189b chia hết cho 7)
=>100a+11b chia hết cho 7
=>100a+10b+b chia hết cho 7
=>abb chia hết cho 7(đpcm)
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
Gọi A = a + 2b và B = abb
Ta có : B = 100a + 11b và :
100A = 100 . ( a + 2b )
100A = 100a + 200b
=> 100A - B = 100a + 200b - 100a - 11b
=> 100A - B = 200b - 11b = 189b chia hết cho 7 ( vì 189 chia hết cho 7 )
=> 100A - B chia hết cho 7
mà A chia hết cho 7 => 100A chia hết cho 7 => B chia hết cho 7 ( đpcm )
Gọi A = a + 2b và B = abb
Ta có : B = 100a + 11b và :
100A = 100 . ( a + 2b )
100A = 100a + 200b
=> 100A - B = 100a + 200b - 100a - 11b
=> 100A - B = 200b - 11b = 189b chia hết cho 7 ( vì 189 chia hết cho 7 )
=> 100A - B chia hết cho 7
mà A chia hết cho 7 => 100A chia hết cho 7 => B chia hết cho 7 ( đpcm )
abb là tích của a và 2b hay là số có ba chữ số hả bạn