Cho tam giác ABC cân tại A , AM là phân giác của  ( M thuộc BC)
a) Cm tam giác ABM và tam giác ACM
b)Gọi BK , CI là đường cao của tam giác ABC cắt nhau tại H . CM tam giác BKC và tam giác CIB
c) CM : H thuộc AM
d) CM : HB + HC < AB + AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc với BC
d: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
góc HAM=góc KAM
Do đó: ΔAHM=ΔAKM
=>AH=AK
a: Xét ΔABM vuông tại A và ΔNBM vuông tại N có
BM chung
\(\widehat{ABM}=\widehat{NBM}\)
Do đó: ΔABM=ΔNBM
=>\(\widehat{AMB}=\widehat{NMB}\)
=>MB là phân giác của góc AMN
b: Ta có: NK//BM
=>\(\widehat{BMN}=\widehat{KNM}\)(hai góc so le trong) và \(\widehat{MKN}=\widehat{AMB}\)(hai góc đồng vị)
mà \(\widehat{NMB}=\widehat{AMB}\)
nên \(\widehat{KNM}=\widehat{MKN}\)
=>ΔMKN cân tại M
a: XétΔCAI vuông tại A và ΔCHI vuông tại H có
CI chung
\(\widehat{ACI}=\widehat{HCI}\)
Do đó: ΔCAI=ΔCHI
Suy ra: CA=CH
b: Xét ΔABC vuông tại A và ΔHKC vuông tại H có
CA=CH
\(\widehat{ACB}\) chung
DO đó: ΔABC=ΔHKC
c: Ta có: ΔCKB cân tại C
mà CN là đường phân giác
nên CN là đường cao
a: XétΔCAI vuông tại A và ΔCHI vuông tại H có
CI chung
\(\widehat{ACI}=\widehat{HCI}\)
Do đó: ΔCAI=ΔCHI
Suy ra: CA=CH
b: Xét ΔABC vuông tại A và ΔHKC vuông tại H có
CA=CH
\(\widehat{ACB}\) chung
DO đó: ΔABC=ΔHKC
c: Ta có: ΔCKB cân tại C
mà CN là đường phân giác
nên CN là đường cao
câu a thôi nhé
xét hai tam giác abm và tam giác acm ta có
ab=ac(giả thiết-tam giác abc cân tại a)
a^1=a^2(giả thiết am là tia phân giác góc a)
am cạnh chung
suuy ra tam giác abm = tam giác acm