Toán hình:
Cho tam giác ABC có AB< AC, AE là tia phân giác của góc A ( E thuộc BC). Trân Ac lấy điểm D sao cho AB=AD . Hai tia DE và AB cắt nhau ở F. Chứng minh:
a) tam giác BED cân b) AE là trung trực của BD.
c) BD//FC d) BE< EC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)xét ΔABE và ΔADE có:
AE là cạnh chung
\(\widehat{DAE}=\widehat{BAE}\)(AE là tia phân giác của \(\widehat{BAD}\))
AD=AB(gt)
⇒ ΔABE=ΔADE(c-g-c)
b)gọi I là giao điểm của AE và BD ta được:
xét ΔADI và ΔABI có:
AI là cạnh chung
\(\widehat{DAI}=\widehat{BAI}\)(AI là tia phân giác của \(\widehat{BAD}\))
AD=AB(gt)
⇒ΔADI=ΔABI(c-g-c)
⇒.ID=IB(2 cạnh tương ứng)(1)
.\(\widehat{DIA}=\widehat{BIA}\)(2 góc tương ứng)(2)
Mà \(\widehat{DIA}+\widehat{BIA}=180^o\)(2 góc kề bù)(3)
Từ (2) và (3) ⇒\(\widehat{DIA}=\widehat{BIA}=\dfrac{180^o}{2}=90^o\)(4)
Từ (1) và (4) ⇒AE là trung trực của BD(đ.p.c.m)
c)xét ΔEBF có:EF là cạnh huyền⇒EF>EB
Mà DE=BE
⇒DE<EF(đ.p.cm)
d)ta có:
vì ΔABE=ΔADE ⇒\(\widehat{EBA}=\widehat{EDA}=90^o\)
xét ΔCDE và ΔFBE có:
\(\widehat{EBF}=\widehat{EDC}=90^o\)
\(\widehat{CED}=\widehat{FEB}\)(2 góc đối đỉnh)
ED=EB( ΔABE=ΔADE)
⇒ ΔCDE=ΔFBE(g-c-g)
⇒CE=EF(2 cạnh tương ứng)
⇒ΔCEF cân tại E
⇒\(\widehat{CFE}=\dfrac{180^o-\widehat{CEF}}{2}\)
vì ΔABE=ΔADE⇒ED=EB(2 cạnh tương ứng)
⇒ΔEDB cân tại E
⇒\(\widehat{EDB}=\dfrac{180^o-\widehat{DEB}}{2}\)
Mà \(\widehat{DEB}=\widehat{CEF}\)(2 góc đối đỉnh)
⇒\(\widehat{CFE}=\widehat{BDE}\)
⇒CF//BD
Mà AG⊥BD
⇒AG⊥CF(đ.p.cm)
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Cho tam giác ABC, AB<AC.Tia p/g của góc A cắt BC ở D, trên tia AC lấy điểm E sao cho AE=AB. Gọi tia M là giao điểm của AB va DE
Cmr: a) tam giác ABD=tam giacd AED
b) tam giacd DBM=tam giác DEC
a) - Xét tam giác ABD và tam giác AED, có:
+ Chung AD
+ góc BAD = góc EAD (AD là tia phân giác của góc BAC)
+ AB = AE (gt)
=> tam giác ABD = tam giác AED (cgc)
a) Áp dụng định lí Pytago vào \(\Delta ABC\)ta có:
\(BC^2=AB^2+AC^2\)Hay \(BC=\sqrt{6^2+8^2=10}\)
Ủng hộmi nha
a) Xét \(\Delta ABC\)vuông tại A, AB = 6cm; AC = 8cm
\(\Rightarrow BC^2=AB^2+AC^2\)
\(BC^2=6^2+8^2\)
\(BC^2=36+64\)
\(BC^2=100\)
\(BC=10\)
Suy ra cạnh BC = 10cm
b) Xét \(\Delta BAC\)và \(\Delta BED\)ta có:
\(\widehat{BAC}=\widehat{DEB}=90^o\)
\(\widehat{B}\)chung
\(BD=BC\left(gt\right)\)
\(\Rightarrow\Delta BAC=\Delta BED\)
Vậy...