Cho a + b >2 . Chứng minh : a\(^4\)+ b\(^4\)> 2 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\left(a^2-b^2\right)^2\ge0\)
\(\Leftrightarrow a^4+b^4-2a^2b^2\ge0\)
\(\Leftrightarrow a^4+b^4\ge2a^2b^2\)
\(\Leftrightarrow a^4+b^4+a^4+b^4\ge a^4+2a^2b^2+b^4\)
\(\Leftrightarrow2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\)
\(\Leftrightarrow a^4+b^4\ge\dfrac{\left(a^2+b^2\right)^2}{2}\)
CMTT\(\Rightarrow a^2+b^2>\dfrac{\left(a+b\right)^2}{2}=\dfrac{2^2}{2}=2\)
\(\Rightarrow a^4+b^4>\dfrac{2^2}{2}=2\left(đpcm\right)\)
(a^2+b^2)/2>=ab
<=>(a^2+b^2)>=2ab
<=> a^2+2ab+b^2>=2ab
<=>a^2+b^2>=0(luôn đúng)
=> điều phải chứng minh.
Xét hiệu: \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)
=> \(a^2+b^2\ge2ab\)
Dấu "=" xra <=> a = b
Áp dụng ta có:
a) \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)
dấu "=" xra <=> a = b = c = 1
b) \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a.4b.4c.4d=256abcd\)
Dấu "=" xra <=> a = b= c = d = 2
Ta có:
\((3b-2a)^2\ge0\)
\(\Rightarrow\) \(9b^2-12ab+4a^2\ge0\)
\(\Rightarrow\) \((9b^2+4a^2+13ab)-25ab\ge0\)
\(\Rightarrow\)\((9b^2+9ab+4a^2+4ab)-25ab\ge0\)
\(\Rightarrow\)\((a+b)\left(9a+4b\right)\ge25ab\)
\(\Rightarrow\) \(\dfrac{9a+4b}{ab}\ge\dfrac{25}{a+b}\)
\(\Rightarrow\) \(\dfrac{9}{b}+\dfrac{4}{a}\ge\dfrac{25}{2}\) ( vì a+b = 2) (đpcm)
(Bài toán này áp dụng theo hệ quả của bất đẳng thức cauchy-schwar.)
Bài 2:
a) Áp dụng BĐT AM - GM ta có:
\(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\dfrac{1}{4a}+\dfrac{1}{4b}\) \(\ge2\sqrt{\dfrac{1}{4^2ab}}=\dfrac{2}{4\sqrt{ab}}=\dfrac{1}{2\sqrt{ab}}\)
\(\ge\dfrac{1}{a+b}\) (Đpcm)
b) Trừ 1 vào từng vế của BĐT ta được BĐT tương đương:
\(\left(\frac{x}{2x+y+z}-1\right)+\left(\frac{y}{x+2y+z}-1\right)+\left(\frac{z}{x+y+2z}-1\right)\le\frac{-9}{4}\)
\(\Leftrightarrow-\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le-\frac{9}{4}\)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)
Áp dụng BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) ta có:
\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)
\(\ge\dfrac{9}{2x+y+z+x+2y+z+x+y+2z}=\dfrac{9}{4\left(x+y+z\right)}\)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)
\(\Leftrightarrow\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\le\dfrac{3}{4}\) (Đpcm)
Bài 1:
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT\ge\dfrac{\left(a+b\right)^2}{a-1+b-1}=\dfrac{\left(a+b\right)^2}{a+b-2}\)
Nên cần chứng minh \(\dfrac{\left(a+b\right)^2}{a+b-2}\ge8\)
\(\Leftrightarrow\left(a+b\right)^2\ge8\left(a+b-2\right)\)
\(\Leftrightarrow a^2+2ab+b^2\ge8a+8b-16\)
\(\Leftrightarrow\left(a+b-4\right)^2\ge0\) luôn đúng
Xét VT = 1/ab + 1/(a² + b²) = 1/2ab + 1/(a² + b²) + 1/2ab
Áp dụng bđt: 1/x + 1/y ≥ 4/(x + y) với x, y >0 và với a + b = 1 ta có:
1/2ab + 1/(a² + b²) ≥ 4/(2ab + a² + b²) = 4/(a + b)² = 4
Áp dụng bđt 4xy ≤ (x + y)² ta có:
1/2ab = 2/4ab ≥ 2/(a + b)² = 2
=> VT ≥ 4 + 2 = 6
Dấu "=" xảy ra khi a = b và a + b = 1 nên a = b = ½
a ) Áp dụng BĐT phụ \(a^2+b^2\ge2ab\) cho các cặp số thực , ta có :
\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
b ) Làm tương tự như a )
Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)
a) Lại có : \(\left(a-1\right)^2\ge0\Leftrightarrow...\Leftrightarrow a^2+1\ge2a\)
cmtt \(\Rightarrow\left\{{}\begin{matrix}b^2+1\ge2b\\c^2+1\ge2c\end{matrix}\right.\)
Nhân vế theo vế ta đc: \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\left(dpcm\right)\)
b) Tiếp tục có \(\left(a-2\right)^2\ge0\Leftrightarrow...\Leftrightarrow a^2+4\ge4a\)
CMTT: \(\Rightarrow\left\{{}\begin{matrix}b^2+4\ge4b\\c^2+4\ge4c\end{matrix}\right.\)
Nhân vế theo vế ta đc: \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\ge4a.4b.4c=256abc\left(dpcm\right)\)
Áp dụng bất đẳng thức Bunyakovsky ta có:
\(\left(a+b\right)^2\le\left(1^2+1^2\right)\left(a^2+b^2\right)\)
\(\Leftrightarrow\)\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow\)\(\left(a+b\right)^4\le4\left(a^2+b^2\right)^2\)
Áp dụng bất đẳng thức Bunyakovsky ta có:
\(\left(a^2+b^2\right)^2\le2\left(a^4+b^4\right)\)
\(\Leftrightarrow\)\(4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\)
\(\Rightarrow\)\(\left(a+b\right)^4\le8\left(a^4+b^4\right)\)
\(2< a+b\)\(\Leftrightarrow\)\(16< \left(a+b\right)^4\)
\(\Leftrightarrow\)\(16< 8\left(a^4+b^4\right)\)
\(\Leftrightarrow\)\(a^4+b^4>2\)
Vì a+b lớn hơn 2
=>(a+b)4>2
=>a4+b4>2(đpcm)