Biết \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\) CMR: \(a^2=b.c\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+a\right)-\left(c-a\right)}=\frac{2b}{2a}=\frac{b}{a}\)
\(\Rightarrow\frac{a+b}{c+a}=\frac{b}{a}=\frac{a+b-b}{c+a-a}=\frac{a}{c}\Rightarrow\frac{b}{a}=\frac{a}{c}\Rightarrow a^2=bc\)
CMR nếu a2 = b.c thì
a,\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\) b,\(\frac{a^2+c^2}{b^2+a^2}=\frac{c}{b}\)
a) a2 = bc
\(\Rightarrow\frac{a}{c}=\frac{b}{a}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
b) a2 = bc
\(\Rightarrow\frac{a}{b}=\frac{c}{a}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{a^2}=\frac{a}{b}.\frac{c}{a}=\frac{c}{b}\)
\(\Rightarrow\frac{a^2+c^2}{b^2+a^2}=\frac{c}{b}\)
Ta có: \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
=> \(\left(a+b\right).\left(c-a\right)=\left(a-b\right).\left(c+a\right)\)
=> \(bc-a^2-ab=a^2-bc-ab\)
=> \(2a^2=2bc\)
Triệt tiêu => \(a^2=bc\left(đpcm\right)\)
Vậy a2 = bc
CHÚC BẠN HỌC TỐT
nhân chéo lên nha bạn rút gọn ac ta đc bc-a ^ 2 - ab= a ^ 2-bc-ab <=>2a ^ 2= 2bc <=> a ^ 2= bc=>ďpcm
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) , ta được :
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{2b}=\frac{2}{b}\)
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{4}{2a}=\frac{2}{a}\)
Cộng các BĐT trên theo vế : \(2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Dấu "=" xảy ra khi a = b = c => Tam giác đó là tam giác đều.
Cho a,b.c là 3 cạnh 1 tam giác. CMR: 1 / a+b−c + 1 / b+c−a + 1 / c+a−b ≥ 1 / a +1 / b +1 / c
Áp dụng BĐT 1 / x +1 / y ≥ 4 / x+y , ta được :
1 / a+b−c + 1 / b+c−a ≥ 4 / 2b = 2 / b
1 / b+c−a +1 / c+a−b ≥ 4 / 2c = 2 / c
1 / a+b−c +1 / c+a−b ≥ 4 / 2a = 2 / a
Cộng các BĐT trên theo vế : 2( 1 / a+b−c + 1 / b+c−a + 1 / c+a−b ) ≥ 2( 1 / a + 1 / b + 1 / c )
⇒ 1 / a+b−c + 1 / b+c−a + 1 / c+a−b ≥ 1 / a + 1 / b + 1 / c
Dấu "=" xảy ra khi a = b = c => Tam giác đó là tam giác đều.
dự đoán của Thần thánh
\(\frac{ab}{a^2+b^2}=\frac{a^2}{2a^2}=\frac{1}{2}\)
\(VT=\frac{3}{2}+\frac{9}{4}=\frac{12}{8}+\frac{18}{8}=\frac{30}{8}=\frac{15}{4}\)
\(p=\frac{ab}{a^2+b^2}+....+\frac{ca}{c^2+a^2};A=\frac{1}{4}\left(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}\right)\)
áp dụng BDT cô si ta có
\(\frac{ab}{a^2+b^2}+\frac{\left(a^2+b^2\right)}{\frac{4}{9}}\ge2\sqrt{\frac{ab}{\frac{4}{9}}}=\frac{2}{\frac{2}{3}}\sqrt{ab}=3\sqrt{ab}\)
tương tự với các BDT còn lại suy ra
\(p+\frac{9}{4}\left(2a^2+2b^2+2c^2\right)\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)
\(P+\frac{9}{2}\left(a^2+b^2+c^2\right)\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
áp dụng BDT cô si ta có
\(a^2+\frac{1}{9}\ge2\sqrt{\frac{a^2}{9}}=\frac{2a}{3}\)
tương tự với b^2+c^2 ta được
\(a^2+b^2+c^2+\frac{1}{3}\ge\frac{2}{3}\left(a+b+c\right)=\frac{2}{3}\)
\(\Rightarrow a^2+b^2+c^2\ge\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\)
" thay 1/3 vào ta được
\(p+\frac{3}{2}\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
áp dụng BDT cô si dạng " Rei " " luôn đúng với những bài ngược dấu "
\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\ge3\sqrt[3]{\sqrt{abc}}=3\sqrt[3]{abc}\)
mà \(a+b+c\ge3\sqrt[3]{abc}\)
thay a+b+c=1 vào ta được
\(P+\frac{3}{2}\ge3\Leftrightarrow P\ge\frac{6}{2}-\frac{3}{2}=\frac{3}{2}\) " 1 "
bây giờ tính nốt con \(A=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
áp dụng BDT \(\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{1}{a+b+c}\)
\(A=\frac{9}{4}.\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{9}{4}\left(\frac{1}{a+b+c}\right)\)
mà a+b+C=1 suy ra
\(A\ge\frac{9}{4}\) "2"
từ 1 và 2 suy ra
\(VT=P+A\ge\frac{3}{2}+\frac{9}{4}=\frac{12}{8}+\frac{18}{8}=\frac{30}{8}=\frac{15}{4}\)
" đúng với dự đoán của thần thánh "
\(\frac{ab}{a+b}=\frac{ac}{a+c}=\frac{bc}{b+c}\Rightarrow\frac{abc}{c\left(a+b\right)}=\frac{abc}{b\left(a+c\right)}=\frac{abc}{a\left(b+c\right)}\)
\(\Rightarrow c\left(a+b\right)=b\left(a+c\right)\Leftrightarrow ac+bc=ab+bc\Rightarrow ac=ab\Rightarrow c=b\) (1)
\(\Rightarrow b\left(a+c\right)=a\left(b+c\right)\Leftrightarrow ab+bc=ab+ac\Rightarrow bc=ac\Rightarrow b=a\) (2)
\(\Rightarrow c\left(a+b\right)=a\left(b+c\right)\Leftrightarrow ac+bc=ab+ac\Rightarrow bc=ab\Rightarrow c=a\) (3)
Từ (1) ; (2) ; (3) => \(a=b=c\) (ĐPCM)
Ta có:\(a^2=b.c\)
\(\Rightarrow\frac{a^2+c^2}{a^2+b^2}=\frac{b.c+c^2}{b.c+b^2}=\frac{c\left(b+c\right)}{b\left(b+c\right)}=\frac{c}{b}=\frac{c^2}{b^2}\)
\(\Leftrightarrow\frac{a^2+c^2}{a^2+b^2}=\frac{c^2}{b^2}\left(đpcm\right)\)
#Hok_tốt
★๖ۣۜßảo๖ۣۜPɦα♏๖ۣۜ[EηgĻïšħ☯€lub]★
\(\frac{c}{b}=\frac{c^2}{b^2}\)??!
Ta có :
\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)\(\Leftrightarrow\)\(\frac{a+b}{c+a}=\frac{a-b}{c-a}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{a+b+a-b}{c+a+c-a}=\frac{a+a}{c+c}=\frac{2a}{2c}=\frac{a}{c}\) \(\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta lại có :
\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{a+b-a+b}{c+a-c+a}=\frac{b+b}{a+a}=\frac{2b}{2a}=\frac{b}{a}\) \(\left(2\right)\)
Từ (1) và (2) suy ra :
\(\frac{a}{c}=\frac{b}{a}\)\(\Rightarrow\)\(a.a=b.c\)\(\Rightarrow\)\(a^2=bc\)
Vậy từ \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\) suy ra \(a^2=bc\)
Chúc bạn học tốt ~
Có a+b/a-b = c+a/c-a
hay: (a+b) (c -a) = ( c + a)(a - b)
ac - a^2 + bc - ab = ac - bc + a^2 - ab
<=> 2bc = 2a^2
=> bc = a^2