K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2022

`a)`

  `m > n`

`<=>2m > 2n`

`<=>2m+3 > 2n+3`

Vậy `2n+3 < 2m+3`

_________________________

`b)`

   `m > n`

`<=>-m < -n`

`<=>-m-5 < -n-5`

Vậy `-n-5 > -m-5`

13 tháng 5 2022

a)\(m>n\Rightarrow2m>2n\Rightarrow2m+3>2n+2\)

b)\(m>n\Rightarrow-m< -n\Rightarrow-m-5< -n-5\)

a: m<n

=>2022m<2022n

b: m<n

=>-4m>-4n

17 tháng 4 2023

a, do m<n

=> 2022m<2022n

b,do m<n

=> -4m<-4n

a/ ta có : a<b

=> 2a<2b

=>2a-1<2b-1

 

10 tháng 9 2021

c

Chọn C

a: m>n

=>2m>2n

=>2m-2>2n-2

b: m>n

=>-3m<-3n

=>-3m+1<-3n+1

c: m>n

=>2m>2n

=>2m+3>2n+3

mà 2n+3>2n+1

nên 2m+3>2n+1

d: m>n

=>-5m<-5n

=>-5m+3<-5n+3

mà -5n+3<-5n+7

nên -5m+3<-5n+7

Giải:

a) Gọi dãy đó là A, ta có:

\(A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\) 

\(2A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\) 

\(2A-A=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\right)\) 

\(A=\dfrac{1}{2}-\dfrac{1}{2^{2014}}\) 

Vì \(\dfrac{1}{2}< 1;\dfrac{1}{2^{2014}}< 1\) nên \(\dfrac{1}{2}-\dfrac{1}{2^{2014}}< 1\) 

\(\Rightarrow A< 1\) 

b) \(A=\dfrac{10^{11}-1}{10^{12}-1}\) và \(B=\dfrac{10^{10}+1}{10^{11}+1}\) 

Ta có:

\(A=\dfrac{10^{11}-1}{10^{12}-1}\) 

\(10A=\dfrac{10^{12}-10}{10^{12}-1}\) 

\(10A=\dfrac{10^{12}-1+9}{10^{12}-1}\) 

\(10A=1+\dfrac{9}{10^{12}-1}\) 

Tương tự:

\(B=\dfrac{10^{10}+1}{10^{11}+1}\) 

\(10B=\dfrac{10^{11}+10}{10^{11}+1}\) 

\(10B=\dfrac{10^{11}+1+9}{10^{11}+1}\) 

\(10B=1+\dfrac{9}{10^{11}+1}\) 

Vì \(\dfrac{9}{10^{12}-1}< \dfrac{9}{10^{11}+1}\) nên \(10A< 10B\) 

\(\Rightarrow A< B\)

27 tháng 3 2017

Ta có: m - 1/2 = n => m - n = 1/2 => m - n > 0 => m > n.

Đáp án cần chọn là: D

4 tháng 9 2017

Ta có: m + 1/2 = n => m - n = - 1/2 => m - n < 0 => m < n.

Đáp án cần chọn là: A

a:

Kẻ AH vuông góc BC

 \(S_{ABM}=\dfrac{1}{2}\cdot AH\cdot BM\)

\(S_{ACM}=\dfrac{1}{2}\cdot AH\cdot CM\)

mà BM=1/2CM

nên \(S_{ABM}=\dfrac{1}{2}\cdot S_{ACM}\)

b: Kẻ MK vuông góc AC

\(S_{AMN}=\dfrac{1}{2}\cdot MK\cdot AN\)

\(S_{MNC}=\dfrac{1}{2}\cdot MK\cdot NC\)

mà AN=NC

nên \(S_{AMN}=S_{MNC}=\dfrac{1}{2}\cdot S_{AMC}=S_{AMB}\)