K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2021

Vì KB,KI là tiếp tuyến \(\Rightarrow KB=KI\)

Vì EI,EA là tiếp tuyến \(\Rightarrow EA=EI\)

\(\Rightarrow\) chu vi \(\Delta MEK=MK+ME+KE=MK+ME+KI+IE\)

\(=MK+ME+KB+EA=\left(MK+KB\right)+\left(ME+EA\right)=MA+MB\)

mà M,A,B cố định \(\Rightarrow\) đpcm

1: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO\(\perp\)AB

Gọi G là giao điểm của OM và AB

=>MO vuông góc với AB tại G

\(AM=R\sqrt{3}\)

\(\Leftrightarrow\left\{{}\begin{matrix}OG=\dfrac{R^2}{2R}=\dfrac{R}{2}\\GM=2R-\dfrac{R}{2}=\dfrac{3}{2}R\end{matrix}\right.\)

\(\Leftrightarrow AG=\dfrac{R^2\sqrt{3}}{2R}=\dfrac{R\sqrt{3}}{2}\)

\(\left\{{}\begin{matrix}S_{AGM}=S_{BGM}=\dfrac{AG\cdot GM}{2}=\dfrac{R\sqrt{3}}{2}\cdot\dfrac{3R}{2}:2=\dfrac{3R^2\sqrt{3}}{8}\\S_{OGA}=S_{OGB}=\dfrac{OG\cdot GB}{2}=\dfrac{R}{2}\cdot\dfrac{R\sqrt{3}}{2}:2=\dfrac{R^2\sqrt{3}}{8}\end{matrix}\right.\)

\(S_{AOBM}=2\cdot\left(S_{AGM}+S_{OGA}\right)=2\cdot\dfrac{4R^2\sqrt{3}}{8}=R^2\sqrt{3}\)

2: Xét tứ giác NHBI có 

\(\widehat{NHB}+\widehat{NIB}=180^0\)

Do đó: NHBI là tứ giác nội tiếp

Suy ra: \(\widehat{NHI}=\widehat{NBA}\)