K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2019

\(4x-xy+2y=3\)

\(\Rightarrow x\left(4-y\right)-8+2y=3-8\)

\(\Rightarrow x\left(4-y\right)-2\left(4-y\right)=-5\)

\(\Rightarrow\left(x-2\right)\left(4-y\right)=-5\)

\(\Rightarrow\left(x-2\right)\left(y-4\right)=5\)

\(\Rightarrow\left(x-2\right);\left(y-4\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Tự xét bảng

\(3y-xy-2x-5=0\)

\(\Rightarrow y\left(3-x\right)-2x=5\)

\(\Rightarrow y\left(3-x\right)+6-2x=5+6\)

\(\Rightarrow y\left(3-x\right)+2\left(3-x\right)=11\)

\(\Rightarrow\left(y+1\right)\left(3-x\right)=11\)

\(\Rightarrow\left(3-x\right);\left(y+1\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

Tự xét

\(2xy-x-y=100\)

\(\Rightarrow x\left(2y-1\right)-y=100\)

\(2x\left(2y-1\right)-\left(2y-1\right)=100+1\)

\(\left(2x-1\right)\left(2y-1\right)=101\)

\(\Rightarrow\left(2x-1\right);\left(2y-1\right)\inƯ\left(101\right)=\left\{\pm1;\pm101\right\}\)

Tự xét bảng

P/s : bài 3 có gì sai ko ?

20 tháng 2 2019

bài 3 ko sai đâu

10 tháng 1 2017

bài 1

Xét tổng : (ax - by) + (ay - bx) = ax - by + ay - bx = (ax + ay) - (by + bx) = a(x + y) - b(x + y) = (a - b)(x + y) chia hết cho x + y .

Vậy (ax - by) + (ay - bx) chia hết cho x + y (1)

Mà ax - by chia hết cho x + y (2)

Từ (1) và (2) suy ra ay - bx chia hết cho x + y (đpcm) 

bài 2 

a)

a) Gộp thành từng nhóm bốn số, ta được 25 nhóm, mỗi nhóm bằng - 4. Do đó A = - 100. Vì thế A chia hết cho 2, chia hết cho 5, không chia hết cho 3.

b)

b, A = 2^2*5^2

A có 9 ước tự nhiên và 18 ước nguyên

bài 3 bạn tự làm nhé dài lắm mình mỏi tay rồi

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

10 tháng 2 2017

to cung dang thac mac cam on

13 tháng 7 2016

trả lời hộ mìh nha mìh cần gấp

9 tháng 2 2018

a) (n mũ 2+n) chia hết cho 2 

=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2

9 tháng 2 2018

\(n^2+n=n\left(n+1\right)\)

Vì n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => đpcm

6 tháng 3 2017

Ta có :

\(A+B=2x^2yz+xy^2z\)

\(=xyz\left(2x+y\right)\)

Vì \(2x+y⋮m\) nên \(xyz\left(2x+y\right)⋮m\)

Do đó : \(A+B⋮m\) (đpcm)

1 tháng 3 2018

BÀI 1:

\(A+B=x^2y+xy^2\)

\(\Leftrightarrow\)\(A+B=xy\left(x+y\right)\)

Vì    \(x+y\)\(⋮\)\(13\)

nên     \(xy\left(x+y\right)\)\(⋮\)\(13\)

Vậy    \(A+B\)\(⋮\)\(13\)  nếu      \(x+y\)\(⋮\)\(13\)

15 tháng 5 2020

44WRW

15 tháng 4 2018

a. Vì n thuộc N* nên ta xét 2 trường hợp sau:

+ Nếu n là số lẻ => n+1 là số chẵn

                          => n+1 chia hết cho 2

                          => (n+1)(3n+2)  chia hết cho 2

                          => (n+1)(3n+2) là một số chẵn

+ Nếu n là số chẵn => 3n là số chẵn

                               => 3n+2 là một số chẵn

                               => 3n+2 chia hết cho 2

                               =>(n+1)(3n+2)  chia hết cho 2

                               => (n+1)(3n+2) là một số chẵn

Vậy với n thuộc N* , (n+1)(3n+2) là một số chẵn

b, Vì 6x+11y chia hết cho 31

=> 6x+11y + 31y chia hết cho 31 (Vì 31y chia hết cho 31)

=> 6x+42y chia hết cho 31

=>6.(x + 7y) chia hết cho 31

=>x+7y chia hết cho 31 (Vì (6,31) = 1)

Vậy x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31

22 tháng 5 2020

a, Giả sử \(x,y \vdots 3\)

=> \(x^2 ;y^2 \) : 3 dư 1

=> \(z^2 = x^2+y^2 \) : 3 dư 2 ( vô lý vì \(z^2\) là số chính phương )

Vậy \(x\vdots 3y\vdots 3 => xy \vdots 3\)

Chứng minh tương tự \(xy \vdots 4\)

\((3;4) =1 => xy \vdots 12\)

22 tháng 5 2020

còn câu b ạ?