Cho đa thức A(x) = Gx2 + bx + c và 5a + b + 2c = 0
Cm A(2) . A(-1) \(\le\)0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$C(2)=a.2^2+b.2+c=4a+2b+c$
$C(-1)=a(-1)^2+b(-1)+c=a-b+c$
$\Rightarrow C(2)+C(-1)=4a+2b+c+(a-b+c)=5a+b+2c=0$
$\Rightarrow C(-1)=-C(2)$
$\Rightarrow C(2)C(-1)=-C(2)^2\leq 0$
Ta có đpcm.
a) \(P\left(-1\right)=a\left(-1\right)^2+b\left(-1\right)+c=a-b+c\)
\(P\left(-2\right)=a\left(-2\right)^2+b\left(-2\right)+c=4a-2b+c\)
b) \(P\left(-1\right)+P\left(-2\right)=\left(a-b+c\right)+\left(4a-2b+c\right)=5a-3b+2c\)
\(\Rightarrow P\left(-1\right)=-P\left(-2\right)\)
Do đó \(P\left(-1\right)\) . \(P\left(-2\right)=-\left[P\left(-2\right)^2\right]\le0\)
Lời giải:
a)
\(f(1)=a.1^2+b.1+c=a+b+c\)
\(f(2)=a.2^2+b.2+c=4a+2b+c\)
b)
\(f(-2)=a(-2)^2+b(-2)+c=4a-2b+c\)
Do đó:
\(f(1)+f(-2)=(a+b+c)+(4a-2b+c)=5a-b+2c=0\)
\(\Rightarrow f(-2)=-f(1)\)
\(\Rightarrow f(1)f(-2)=-f(1)^2\leq 0\)
c)
Với $a=1,b=2,c=3$ thì :
\(f(x)=x^2+2x+3=x(x+1)+(x+1)+2=(x+1)(x+1)+2\)
\(=(x+1)^2+2\)
Vì \((x+1)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow f(x)=(x+1)^2+2\geq 2>0\)
Vậy $f(x)\neq 0$
Do đó $f(x)$ không có nghiệm.
a) Ta có : \(Q\left(2\right)=4a+2b+c\)
\(Q\left(-1\right)=a-b+c\)
\(\Rightarrow Q\left(2\right)+Q\left(-1\right)=5a+b+2c=0\)
\(\Rightarrow Q\left(2\right)=-Q\left(-1\right)\)
\(\Rightarrow Q\left(2\right).Q\left(-1\right)\le0\)
b) Vì \(Q\left(x\right)=0\) với mọi $x$
$\to Q(0) = c=0$
$Q(1) = a+b+c=a+b=0$ $(1)$
$Q(-1) = a-b +c = a-b=0$ $(2)$
Từ $(1)$ và $(2)$ $\to a=b=c=0$
Câu 1:
a: Đặt P(x)=0
=>3x+21=0
hay x=-7
b: Đặt Q(x)=0
=>2x-7-x-5=0
=>x-12=0
hay x=12
1)
a) P(x) = 3x+21 = 0
\(\Rightarrow3x=-21\)
\(\Rightarrow x=-7\)
b) Q(x) = 2x-7-(x+5) = 0
\(\Rightarrow2x-7-x-5=0\)
\(\Rightarrow x-12=0\)
\(\Rightarrow x=12\)