1. Chứng minh : A = 32^7 - 8^10 chia hết cho 62.
2. Chứng tỏ : A = 81^3 + 9^5 có chữ số tận cùng là 0.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk bt lm câu b thôi ý bn thông cảm haa
Ta có :
A = 1 + 7 + \(7^2\)+\(7^3\)+...+ \(7^{2017}\)
7A = 7 + \(7^2\)+\(7^3\)+\(7^4\)+...+ \(7^{2018}\)
=> 7A - A = ( 7 + \(7^2\)+\(7^3\)+\(7^4\)+...+ \(7^{2018}\) ) - ( 1 + 7 + \(7^2\)+\(7^3\)+...+ \(7^{2017}\) )
=> 6A = \(7^{2018}\) - 1
=> A = \(\dfrac{7^{2018}-1}{6}\)
Vậy A = \(\dfrac{7^{2018}-1}{6}\)
Bài 4:
Ta có:
M=1+7+72+...+781
M=(1+7+72+73)+(74+75+76+77)+...+(778+779+780+781)
M=(1+7+72+73)+74.(1+7+72+73)+...+778.(1+7+72+73)
M=400+74.400+...+778.400
M=400.(1+74+...+778)
\(\Rightarrow\)M=......0
Vậy chữ số tận cùng của M là chữ số 0
Bài 5:
a)Ta có:
M=1+2+22+...+2206
M=(1+2+22)+(23+24+25)+...+(2204+2205+2206)
M=(1+2+22)+23.(1+2+22)+...+2204.(1+2+22)
M=7+23.7+...+2204.7
M=7.(1+23+...+2204)\(⋮\)7
Vậy M chia hết cho 7
c)Câu này đề có phải là M+1=2x ko?Nếu đúng thì giải như zầy nè:
Ta có:
M=1+2+22+...+2206
2M=2+22+23+...+2207
2M-M=(2+22+23+...+2207)-(1+2+22+...+2206)
M=2+22+23+...+2207-1-2-22-...-2206
\(\Rightarrow\)M=2207-1
M+1=2207-1+1
M+1=2207
Ta có:
M+1=2x
2x=M+1
2x=2207
x=2207:2
x=\(\frac{2^{207}}{2}\)
Bài 6:
Ta có:
A=(1+3+32)+(33+34+35)+...+(357+358+359)
A=(1+3+32)+33.(1+3+32)+...+357.(1+3+32)
A=13+33.13+...+357.13
A=13.(1+33+..+357)\(⋮\)13
Vậy A chia hết cho 13
mk chỉ biết giải dc từng nấy câu thui. thông cảm cho mk nha