K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2015

D = (53 + 52 - 5) : 5 = (53 : 5) + ( 52:5) - (5:5) = 25 + 5 - 1 = 30

E =( 82002 + 82001 - 82000) : 82000 = (82002 : 82000) + (82001: 82000) - (82000 : 82000)

E = 82 + 8 - 1 = 71

10 tháng 1 2018

D = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... - 1999 - 2000 + 2001 + 2002 - 2003

D = ( 1 + 2 - 3 - 4 ) + ( 5 + 6 - 7 - 8 ) + ... + ( 1997 + 1998 - 1999 - 2000 ) + 2001 + 2002 - 2003

D = ( -4 ) + ( -4 ) + ... + ( -4 ) + ( 2001 + 2002 - 2003 )

D = ( -4 ) . 500 + 2000

D = -2000 + 2000

D = 0

10 tháng 1 2018

D = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ............. - 1999 - 2000 + 2001 + 2002 - 2003

D = ( 1 + 2 - 3 - 4 ) + ( 5 + 6 - 7 - 8 ) + ............ + ( 1997 + 1998 - 1999 - 2000 ) + 2001 + 2002 - 2003

D = ( -4 ) + ( -4 ) + .............. + ( -4 ) + ( 2001 + 2002 - 2003 )

D = ( -4 ) . 500 + 2000 

D = -2000 + 2000

D = 0

9 tháng 3 2015

A=(1+2-3)+(-4+5+6-7)+(-8+9+10-11)+......(-2000+2001+2002-2003)

A=0+0....+0

A=0

9 tháng 3 2015

Ta thấy 2-3-4=-5

            6-7-8=-9

           .............

           1998-1999-2000=-2001

=> 1+2-3-4+5+6-7-8+....-1999-2000+2001-2003=1-5+5-9+9-...-2001+2001+2002-2003

=> A= 1+2002-2003=0

Vậy A=0

31 tháng 7 2023

S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - ...... + 1998 - 1999 - 2000 + 2001 + 2002

S = 1 + (2 - 3 - 4 + 5 )+ (6 - 7 - 8 + 9) + (10 - ...... + (1998 - 1999 - 2000 + 2001) + 2002

S=1+0+0...+0+2002

S= 1+2002

S=2003

 

AH
Akai Haruma
Giáo viên
31 tháng 7 2023

Lời giải:

$S=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+...+(1997+1998-1999-2000)+2001+2002$

$=\underbrace{(-4)+(-4)+....+(-4)}_{500}+2001+2002$

$=(-4).500+2001+2002=2003$

6 tháng 8 2017

2) \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)

\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{y}{4}\)

\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{2y}{8}\)

\(\Rightarrow\dfrac{5}{x}=\dfrac{1-2y}{8}\)

\(\Rightarrow x\left(1-2y\right)=40\)

\(1-2y\) luôn là số lẻ nên \(1-2y\in\left\{\pm1;\pm5\right\}\)

\(\Rightarrow y=\left\{0;1;-2;3\right\}\)

\(\Rightarrow x\in\left\{40;-40;8;-8\right\}\)

Vậy các cặp số x,y thỏa mãn là \(\left(0;40\right);\left(1;-40\right);\left(-2;8\right);\left(3;-8\right)\)

6 tháng 8 2017

Ta có :

\(B=\dfrac{2000+2001}{2001+2002}=\dfrac{2000}{2001+2002}+\dfrac{2001}{2001+2002}\)

Mặt khác :

\(\dfrac{2000}{2001}>\dfrac{2000}{2001+2002}\)

\(\dfrac{2001}{2002}>\dfrac{2001}{2001+2002}\)

\(\Leftrightarrow A=\dfrac{2000}{2001}+\dfrac{2001}{2002}>\dfrac{2000}{2001+2002}+\dfrac{2001}{2001+2002}=\dfrac{2000+2001}{2001+2002}=B\)

\(\Leftrightarrow A>B\)

15 tháng 11 2017

A=1+2-3-4+5+6-7-8+...-1999-2000+2001+2002-2003

A=1+(2-3-4+5)+(6-7-8+9)+...+(1998-1999-2000+2001)+(2002-2003)

A=1+0+0+...+0+(-1)

A=1+(-1)

A=0

Tick cho mk nhahiu

15 tháng 11 2017

A=(1+2-3)+(-4+5+6-7)+(-8+9+10-11)+...+(-2000+2001+2002-2003)

A=0+0+0+...+0

A=0

11 tháng 4 2018

Ta có : 

\(A=\frac{3}{4.5}+\frac{3}{5.6}+\frac{3}{6.7}+...+\frac{3}{99.100}\)

\(A=3\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\right)\)

\(A=3\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=3\left(\frac{1}{4}-\frac{1}{100}\right)\)

\(A=3.\frac{6}{25}\)

\(A=\frac{18}{25}\)

Vậy \(A=\frac{18}{25}\)

Chúc bạn học tốt ~ 

11 tháng 4 2018

\(A=\frac{3}{4.5}+\frac{3}{5.6}+\frac{3}{6.7}+...+\frac{3}{99.100}\)

\(\Rightarrow A=3.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\right)\)

\(\Rightarrow A=3.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(\Rightarrow A=3.\left(\frac{1}{4}-\frac{1}{100}\right)=\frac{3.24}{100}\)

\(=\frac{3.4.6}{25.4}\)

\(\Rightarrow A=\frac{18}{25}\)