Chứng minh rằng: 1/3!+1/4!+1/5!+.....+1/2000! <1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xem bài tại link này nhé! Bài làm đúng đã đc OLM chọn.
Câu hỏi của Cristiano Ronaldo - Toán lớp 7 - Học toán với OnlineMath
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....-\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+......+\frac{1}{2001}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2002}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2001}+\frac{1}{2002}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+.....+\frac{1}{2002}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{2002}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{1001}\right)\)
\(=\frac{1}{1002}+\frac{1}{1003}+\frac{1}{1004}+.....+\frac{1}{2002}\)
Chúc em học tốt nhé!
a>
\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1
Ta thây từ \(4^{21}\rightarrow4^{2000}⋮4^{21}\)
Ta chưng minh
\(A=1+4+4^2+...+4^{20}\)chia hêt \(4^{21}\)
\(\Rightarrow4A=4+4^2+4^3+...+4^{21}\)
\(\Rightarrow A=\frac{4^{21}-1}{3}< 4^{21}\)
Nên đề xai
Nêu đề bảo chưng minh chia hêt cho 21 thì ta co
\(1+4+4^2+...+4^{2000}=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{1998}\left(1+4+4^2\right)\)
\(=21\left(1+4^3+...+4^{1998}\right)⋮21\)
ĐKXĐ : a;b;c \(\ne0\)
Ta có : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2000}\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}-\dfrac{1}{a}\)
\(\Leftrightarrow\dfrac{b+c}{bc}=\dfrac{-\left(b+c\right)}{a\left(a+b+c\right)}\)
\(\Leftrightarrow\left(b+c\right)\left(\dfrac{1}{bc}+\dfrac{1}{a\left(a+b+c\right)}\right)=0\)
\(\Leftrightarrow\left(b+c\right).\dfrac{a\left(a+b+c\right)+bc}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(b+c\right).\dfrac{a^2+ab+ac+bc}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\dfrac{\left(b+c\right)\left(a+b\right)\left(a+c\right)}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b+c=0\\a+b=0\\a+c=0\end{matrix}\right.\left(1\right)\)
Từ (1) kết hợp a + b + c = 2000 ta được điều phải chứng minh
`Answer:`
\(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{31}+\frac{1}{32}\)
a) Ta thấy:
\(\frac{1}{3}+\frac{1}{4}>\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)
\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}>\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2}\)
\(\frac{1}{9}+...+\frac{1}{16}>8.\frac{1}{16}=\frac{1}{2}\)
\(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{32}>16.\frac{1}{32}=\frac{1}{2}\)
\(\Rightarrow S>\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{5}{2}\)
b) Ta thấy:
\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}< 3.\frac{1}{3}\)
\(\frac{1}{6}+...+\frac{1}{11}< 6.\frac{1}{6}\)
\(\frac{1}{12}+...+\frac{1}{23}< 12.\frac{1}{12}\)
\(\frac{1}{24}+...+\frac{1}{32}< 9.\frac{1}{24}\)
\(\Rightarrow S< \frac{1}{2}+1+1+1+\frac{9}{24}=\frac{31}{8}< \frac{9}{2}\)