cho a b c khác 0 thoa mãn a+b+c=0
a/ CM a+b=-c
b/Tính A= (1+a/b).(1+b/c).(1+c/a)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có a+b+c=0 => a=-b-c, b=-a-c, c=-a-b
thay vào A ta được
A=(1-(b+c)/b)(1-(a+c)/c)(1-(a+b)/a)
=(1-1-c/b)(1-1-a/c)(1-1-b/a)
=(-c/b)(-a/c)(-b/a)
=(-abc)/abc
=-1
bạn Nguyễn Thị Lan Hương làm đúng rồi, mk lm cách khác nhé:
BÀI LÀM
\(a+b+c=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
\(=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}\)
\(=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{b}=-1\)
\(a+b+c=0\Rightarrow a+b=-c;a+c=-b;b+c=-a\)
\(\Rightarrow A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(\frac{b+a}{b}\right)\left(\frac{c+b}{c}\right)\left(\frac{a+c}{a}\right)\)
\(=-\frac{c}{b}\cdot-\frac{a}{c}\cdot-\frac{b}{a}=\frac{-c\cdot-a\cdot-b}{b\cdot c\cdot a}=-1\cdot-1\cdot-1=-1\)