Cho 2 đường tròn (O) và (O') cắt nhau tại A và B. Qua A kẻ cát tuyến CAD và EAF với C và E thuộc đường tròn (O), D và F thuộc đường tròn (O') sao cho góc CAB=góc BAF. Chứng minh: CD = EF Giúp e với ạ em cần gấp 😀😀
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chắc câu a và câu b dễ rồi
cô chỉ em làm câu c.
Gọi L là trung điểm AP K là trung điểm AQ
=> PQ=2LK=2OO'
Mà CD=2MN , MN<OO,
=> CD<OO'<PQ
Xét ΔCNO vuông tại N có NI là đường cao
nên CI*CO=CN^2
Xét ΔCNA và ΔCBN có
góc CNA=góc CBN
góc NCA chung
=>ΔCNA đồng dạng vơi ΔCBN
=>CN/CB=CA/CN
=>CN^2=CA*CB=CI*CO
=>CI/CB=CA/CO
=>ΔCIA đồng dạng với ΔCBO
=>góc CIA=góc CBO=góc OAB
http://lazi.vn/edu/exercise/cho-o-va-o-cat-nhau-o-a-va-b-o-va-o-thuoc-2-nua-mat-phang-bo-ab-mot-cat-tuyen-ke-qua-a-cat-o-o-c-va-cat-o
a) Xét tứ giác OASB có
\(\widehat{OAS}\) và \(\widehat{OBS}\) là hai góc đối
\(\widehat{OAS}+\widehat{OBS}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OASB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Sao mỗi lần giải bài em "thường" chỉ giải phần a thôi vậy?