Tìm x
\(\frac{2}{5}-\frac{1}{5}:x=-25\) phần trăm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(1,16-x\right).5,25}{\left(10\frac{5}{9}-7\frac{1}{4}\right).2\frac{2}{17}}=75\%\) <=> \(\frac{6,09-5,25x}{\left(\frac{95}{9}-\frac{29}{4}\right).\frac{36}{17}}=\frac{3}{4}\)<=> \(\frac{6,09-5,25x}{\frac{119}{36}.\frac{36}{17}}=\frac{3}{4}\)
<=> \(\frac{6,09-5,25x}{7}=\frac{3}{4}\)<=> 4(6,09-5,25x)=21 <=> 24,36-21x=21
=> 21x=3,36 => x=3,36:21 => x=0,16
Đáp số: x=0,16
mk sắp phải đi học rồi các bạn giúp mình với có đc ko mk nhớ sẽ đền đáp công ơn của bạn
\(\frac{x-2}{27}+\frac{x-3}{26}+\frac{x-4}{25}+\frac{x-5}{24}+\frac{x-44}{5}=1\)
\(\Leftrightarrow\left(\frac{x-2}{27}-1\right)+\left(\frac{x-3}{26}-1\right)+\left(\frac{x-4}{25}-1\right)+\left(\frac{x-5}{24}-1\right)\)\(+\left(\frac{x-44}{5}+3\right)=1-1\)
\(\Leftrightarrow\frac{x-29}{27}+\frac{x-29}{26}+\frac{x-29}{25}+\frac{x-29}{24}\)\(+\frac{x-29}{5}=0\)
\(\Leftrightarrow\left(x-29\right)\left(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\right)=0\)
Mà \(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\ne0\)
=> x - 29 = 0
=> x = 29.
ĐKXĐ : \(x\ge0,x\ne25,x\ne9\)
a) \(A=\left(\frac{x-5\sqrt{x}}{x-25}-1\right):\left(\frac{25-x}{x+2\sqrt{x}-15}-\frac{\sqrt{x}+3}{\sqrt{x}+5}+\frac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
\(=\left(\frac{x-5\sqrt{x}-\left(x-25\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\right):\left(\frac{-\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)
\(=\frac{-5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}:\left(\frac{25-x-x+9+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)
\(=-\frac{5}{\sqrt{x}+5}:\frac{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}=\frac{-5}{\sqrt{x}+5}.\left(\frac{-\left(\sqrt{x}+5\right)}{\sqrt{x}+3}\right)=\frac{5}{\sqrt{x}+3}\)
b) \(A< 1\Rightarrow\frac{5}{\sqrt{x}+3}< 1\Rightarrow\sqrt{x}+3>5\Rightarrow\sqrt{x}>2\Rightarrow x>4\)
Chú ý kết hợp với điều kiện xác định.
\(\frac{1}{5^x}.\frac{1}{5^8}.\frac{1}{25^3}=\frac{1}{5^{60}}\)
=> \(\frac{1}{5^x.5^8.25^3}=\frac{1}{5^{60}}\)
=> \(\frac{1}{5^x.5^8.\left(5^2\right)^3}=\frac{1}{5^{60}}\)
=> \(\frac{1}{5^x.5^8.5^{2.3}}=\frac{1}{5^{60}}\)
=> \(\frac{1}{5^x.5^8.5^6}=\frac{1}{5^{60}}\)
=> \(\frac{1}{5^{x+8+6}}=\frac{1}{5^{60}}\)
=> \(\frac{1}{5^{x+14}}=\frac{1}{5^{60}}\)
=> \(x+14=60\)
=> \(x=46\)
1 . 1 . 1 = 1
5^x 5^8 25^3 5^60
<=> 1 . 1 . 1 = 1
5^x 5^8 5^6 5^60
<=> 1.1.1 = 1
5^x . 5^8 . 5^6 5^60
<=> 1 = 1
5^x+14 5^60
<=> x+14 =60
<=> x = 60-14
=> x = 46
\(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)
\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)
\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}2x+\frac{3}{5}=\frac{3}{5}\\2x+\frac{3}{5}=-\frac{3}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\2x=-\frac{6}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\)
_Tần vũ_
\(3\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)
\(\Leftrightarrow3\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}\)
\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{27}\)
\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=\left(-\frac{1}{3}\right)^3\)
\(\Leftrightarrow3x-\frac{1}{2}=\frac{-1}{3}\)
\(\Leftrightarrow3x=\frac{1}{6}\)
\(\Leftrightarrow x=\frac{1}{18}\)
_Tần Vũ_
ta có -25%=-1/4
=>2/5-1/5:x=-1/4
1/5:x=13/20
x=4/13