Cho C = \(4^1+4^2+4^3+4^4+..+4^{2016}\) .
Chứng minh C chia hết cho 105. help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 4+4^2+...+4^2016
=>(4+4^2+4^3+4^4+4^5+4^6)+(4^7+4^8+4^9+4^10+4^11+4^12)+...+(4^2011+4^2012+4^2013+4^2014+4^2015+4^2016)
=>4.(1+4+4^2+4^3+4^4+4^5)+4^7.(1+4+4^2+4^3+4^4+4^5)+...+4^2011.(1+4+4^2+4^3+4^4+4^5)
=>4.1365+4^7.1365+...+4^2011.1365
=>1365.(4+4^7+...+4^2011)chia hết cho 105 vì 1365 chia hết cho 105
Vậy C chia hết cho 105
ta có:4+4^2+4^3+....+4^2016=4^1+4^2+4^3+....+4^2016
=>có (2016-1):1+1=2016 số số hạng
C=(4+4^2+4^3+4^4+4^5+4^6)+(4^7+4^8+4^9+4^10+4^11+4^12)+....+(4^2011+4^2012+4^2013+4^2014+4^2015+4^2016)
C=4(1+4+4^2+
sorry nha mình bận
\(3^1+3^2+3^3+...+3^{2010}.\)
=\(\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)
=\(3.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{2009}.\left(1+3\right)\)
=\(3.4+3^3.4+...+3^{2009}.4\)
=\(4.\left(3+3^3+...+3^{2009}\right)\)
Vậy tổng sau chia hết cho 9
Bài 1:
a) C = 4 + 42 + 43 + 44 + ... + 42015 + 42016
C = (4 + 42 + 43) + (44 + 45 + 46) + ... + (42014 + 42015 + 42016)
C = 4(1 + 4 + 42) + 44 ( 1 + 4 + 42) + ...+ 42014(1 + 4 + 42)
C = 4 . 21 + 44 . 21 + ... + 42014 . 21
C = 21(4 + 44 + ... + 42014) \(⋮\)21
=> C \(⋮\)21
C = 4 + 42 + 43 + 44 + 45 + ... + 42015 + 42016
C = (4 + 42 + 43 + 44 + 45 + 46) + ... + (42011 + 42012 + 42013 + 42014 + 42015 + 42016)
C = 4(1 + 4 + 42 + 43 + 44 + 45) + ... + 42011(1 + 4 + 42 + 43 + 44 + 45)
C = 4 . 1365 + 47 . 1365 + ... + 42011 . 1365
C = 1365(4 + 47 + ... + 42011)
mà 1365 \(⋮\)105
=> C \(⋮\)105
\(B=4+4^2+4^3+...+2^{2016}\)
\(\Rightarrow B=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{2015}\left(1+4\right)\)
\(\Rightarrow B=4.5+4^3.5+...+4^{2015}.5\)
\(\Rightarrow B=5\left(4+4^3+...+4^{2015}\right)\Rightarrow B⋮5\)
Lại có, do số số hạng bằng \(2016⋮3\) nên:
\(B=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+...+\left(4^{2014}+4^{2015}+4^{2016}\right)\)
\(B=4\left(1+4+16\right)+4^4\left(1+4+16\right)+4^{2014}\left(1+4+16\right)\)
\(B=4.21+4^4.21+...+4^{2016}.21\)
\(B=21\left(4+4^4+...+4^{2014}\right)\Rightarrow B⋮21\)
Mà 5 và 21 nguyên tố cùng nhau \(\Rightarrow B⋮\left(5.21\right)\Rightarrow B⋮105\)
a)A=1+4+4/\2+.........+4/\11
=(1+4+4/\2)+.....+(4/\9+4/\10+4/\11)
=21+..............+4/\9.(1+4+4/\2)
=21+..+4/\9.21
=(1+4/\3+....+4/\9).21chia hết cho 21
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
=(1+4+42) +(43+44+45)+....+(42017+42018+42019)
=(1+4+42)+43(1+4+42)+.....+42017(1+4+42)
=(1+4+42)(1+43+46+....+42017)
=(1+4+16)(1+43+46+.....+42017)
=21(1+43+46+...+42017)
Vậy 21(1+43+46+.....+42017) chia hết cho 21
\(1+4+4^2+4^3+4^4+....+4^{2019}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+......+\left(4^{2017}+4^{2018}+4^{2019}\right)\)
\(=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+.....+4^{2017}\left(1+4+4^2\right)\)
\(=\left(1+4+4^2\right)\left(1+4^3+.....+4^{2017}\right)\)
\(=21\left(1+4^3+....+4^{2017}\right)\)
Mà \(21⋮21\Rightarrow21\left(1+4^3+.....+4^{2017}\right)⋮21\)
Vậy biểu thức trên chia hết cho 21(đpcm)
Cách làm như sau:
-Chứng minh C chia hết cho 5 bằng cách nhóm 2 số vào một cặp
-Chứng minh C chia hết cho 21 bằng cách nhóm 3 số vào một cặp
Mà 21 và 5 nguyên tố cùng nhau =>C chia hết cho 21.5 => C chia hết cho 105(đpcm)
Ta có :
\(C=4^1+4^2+4^3+4^4+...+4^{2016}\)
\(C=\left(4^1+4^2\right)+\left(4^2+4^3\right)+...+\left(4^{2015}+4^{2016}\right)\)
\(C=4\left(1+4\right)+4^2\left(1+4\right)+...+4^{2015}\left(1+4\right)\)
\(C=4.5+4^2.5+...+4^{2015}.5\)
\(C=5\left(4+4^2+...+4^{2015}\right)⋮5\) \(\left(1\right)\)
Lại có :
\(C=4^1+4^2+4^3+4^4+...+4^{2016}\)
\(C=\left(4^1+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+...+\left(4^{2014}+4^{2015}+4^{2016}\right)\)
\(C=4\left(1+4+16\right)+4^4\left(1+4+16\right)+...+4^{2014}\left(1+4+16\right)\)
\(C=4.21+4^4.21+...+4^{2014}.21\)
\(C=21\left(4+4^4+...+4^{2014}\right)⋮21\) \(\left(2\right)\)
Từ (1) và (2) suy ra : \(C⋮5\) và \(C⋮21\)
\(\Rightarrow\)\(C⋮5.21=105\)
\(\Rightarrow\)\(C⋮105\)
Vậy \(C⋮105\)
Chúc bạn học tốt ~