phân tích đa thức thành nhân tử
B=(n^4+3n^3+2n^2+6n-2)/(n^2+2)
huhu giúp em với giải thích cho em hiểu với ạ ~ ngu quá phải làm sao ???
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
\(=4a^2b^2-2ab\left(a^2+b^2-c^2\right)+2ab\left(a^2+b^2-c^2\right)-\left(a^2+b^2-c^2\right)^2\)
\(=2ab\left[2ab-\left(a^2+b^2-c^2\right)\right]+\left(a^2+b^2-c^2\right)\left[2ab-\left(a^2+b^2-c^2\right)\right]\)
\(=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)
\(=\left(a^2+ab+ab+b^2-c^2\right)\left[c^2-\left(a^2-ab-ab+b^2\right)\right]\)
\(=\left[a\left(a+b\right)+b\left(a+b\right)-c^2\right]\left[c^2-\left(a\left(a-b\right)-b\left(a-b\right)\right)\right]\)
\(=\left[\left(a+b\right)^2-c^2\right]\left[c^2-\left(a-b\right)^2\right]\)
\(=\left[\left(a+b\right)^2-c\left(a+b\right)+c\left(a+b\right)-c^2\right]\left[c^2+c\left(a-b\right)-c\left(a-b\right)-\left(a-b\right)^2\right]\)
\(=\left[\left(a+b\right)\left(a+b-c\right)+c\left(a+b-c\right)\right]\left[c\left(c+a-b\right)-\left(a-b\right)\left(c+a-b\right)\right]\)
\(=\left(a+b+c\right)\left(a+b-c\right)\left(c+a-b\right)\left(c-a+b\right)\)
x^3-3x^2+2 = (x^3-x^2)-(2x^2-2)
=x^2.(x-1)-2.(x^2-1)
=x^2.(x-1)-2.(x+1).(x-1)
=(x-1).(x^2-2x-2)
k mk nha
Lời giải:
$y-x^2y-2xy^2-y^3=y(1-x^2-2xy-y^2)$
$=y[1-(x^2+2xy+y^2)]=y[1-(x+y)^2]=y(1-x-y)(1+x+y)$
câu này gửi rồi mà tôi lm rồi đó Câu hỏi của nguyen thi diem quynh - Toán lớp 8 - Học toán với OnlineMath
a. 1+6x-6x2-x3
=(1-x3)+(6x-6x2)
=(1-x)(1+x+x2)+6x(1-x)
=(1-x)(1+x+x2+6x)
=(1-x)(1+7x+x2)
b. x3-2x-4
=x3-4x+2x-4
=x(x2-4)+2(x-2)
=x(x-2)(x+2)+2(x-2)
=(x2+2x+2)(x-2)
Ủng hộ mk nhak ^_-
a) \(2xy-y+6x-3=\left(2xy+6x\right)-\left(y+3\right)=2x\left(y+3\right)-\left(y+3\right)=\left(2x-1\right)\left(y+3\right)\)
b) \(x^2-2xy-x+2y=\left(x^2-2xy\right)-\left(x-2y\right)=x\left(x-2y\right)-\left(x-2y\right)=\left(x-1\right)\left(x-2y\right)\)
\(x^3+x^2+4=x^3+2x^2-x^2+2x-2x+4\)
\(=x^2\left(x+2\right)-x\left(x+2\right)-2\left(x+2\right)\)
\(=\left(x^2-x-2\right)\left(x+2\right)\)
\(=\left(x^2-2x+x-2\right)\left(x+2\right)\)
\(=\left\{x\left(x-2\right)+\left(x-2\right)\right\}\left(x+2\right)\)
\(=\left(x+1\right)\left(x-2\right)\left(x+2\right)\)