🎁 OLM khai giảng khóa học hè. XEM NGAY!!!
OLM Class: Học trực tiếp cùng giáo viên OLM (hoàn toàn mới)!
Tuyển CTV hỏi đáp hè 2025. Đăng ký ngay!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
So sánh:
A= 1-1/22.1-1/32...1-1/1002 với 1/2
A=(1/22 - 1)*(1/32 - 1)*(1/42 - 1)(1/52 - 1)*...*(1/1002 - 1)
So sánh với -1/2
nani "Doge"
fan bé sans à
wuttttt
so sánh hai số:
A=(2+1)(2^2+1)(2^4+1).((2^16+1) và B=2^32-1
A=1000^2+1003^2+1005^2+1006^2 và
B=1001^2+1002^2+1004^2+1007^2
A = ( 1/22 + 1 ) ( 1/32 - 1 ) ( 1 / 4 2 - 1 ) ( 1 / 52 - 1 ) ... ( 1 / 1002 - 1 )
mình đang cần gấp giúp mình với : <
1. Cho B= 1/1001 + 1/1002 + 1/1003 +.........+ 1/2000
C=1
So sánh B và C
Chứng tỏ rằng: B= 1/1001 + 1/1002 + 1/1003 +...........+ 1/2000 > 7/12
Cho A=\(\frac{1}{1001}+\frac{1}{1002}+...+\frac{1}{2016}\)
Hãy so sánh A với \(\frac{11}{14}\)
Cho \(S=\frac{2}{2005+1}+\frac{2^2}{2005^2+1}+...+\frac{2^{n+1}}{2005^{^{2^n}}+1}+...+\frac{2^{2006}}{2006^{2^{2005}}+1}\). So sánh S với \(\frac{1}{1002}\)
\(\frac{10^{1002+1}}{10^{1001+0}}và\frac{10^{1003+1}}{10^{1002+0}}\)
so sánh 2 tổng trên
kết quả là dấu bé
dấu bé nhớ tích cho mình
Cho S= \(\frac{2}{2005+1}+\frac{2^2}{2005^2+1}+\frac{2^3}{2005^{2^2}+1}+........+\frac{2^{n+1}}{2005^{2^n}+1}+.......+\frac{2^{2006}}{2005^{2^{2006}}+1}\)
So sánh S với \(\frac{1}{1002}\)
So sánh (2+1)(2^2+1)(2^4+1)(2^8+1) với 2^32
A, SO SÁNH : 15/3*8+15/8*13+15/13*18+......................+15/88*93 và 1
B, SO SÁNH : 1/1001+1/1002+1/1003+........................+1/1999+1/2000 và 3/4