giải bất phương trình sau:
\(\frac{x^3-4x^2+5x-20}{x^3-x^2-10x-8}>0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BPT <=> -3x2+15x-12>0
<=> x2-5x+4<0
<=> (x-1)(x-4)<0
<=> \(\hept{\begin{cases}x-1>0\\x-4< 0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1< 0\\x-4>0\end{cases}}\)(loại)
<=> 1<x<4
\(\frac{\left(x^3-4x^2+5x-20\right)}{x^3-x^2-10x-8}>0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^3-4x^2+5x-20>0\\x^3-x^2-10x-8>0\end{matrix}\right.\\\left\{{}\begin{matrix}x^3-4x^2+5x-20< 0\\x^3-x^2-10x-8< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow bấm\:máy\: là\: ra\)
Cậu vô link này có hướng dẫn chi tiết https://hoc24.vn/hoi-dap/question/796601.html
a. (x-3)(x\(^2\)+6x+9)(x-1)(x\(^2\)+2x+1)(-x\(^2\)+2x+3)=0
\(\Leftrightarrow\)(x-3)(x\(^2\)+6x+9)(x-1)(x\(^2\)+2x+1)(x-3)(x+1)=0
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
a, \(1-\frac{2x-1}{9}=3-\frac{3x-3}{12}\)
\(\Leftrightarrow\frac{108-12\cdot\left(2x-1\right)}{108}=\frac{108\cdot3-9\cdot\left(3x-3\right)}{108}\)
\(\Rightarrow108-12\cdot\left(x-1\right)=108\cdot3-9\cdot\left(3x-3\right)\)
\(\Leftrightarrow108-24x+12=324-27x+27\)
\(\Leftrightarrow3x=231\)
\(\Rightarrow x=77\)
c,\(\frac{3}{4x-20}+\frac{15}{50-2x^2}+\frac{7}{6x+30}=0\)
\(\Rightarrow3\cdot\left(50-2x^2\right)\cdot\left(6x+30\right)+15\cdot\left(4x-20\right)\cdot\left(6x+30\right)+7\cdot\left(4x-20\right)\cdot\left(50-2x^2\right)=0\)
\(\Leftrightarrow900x+4500-36x^3-180x^2+360x^2+1800x-1800x-9000+1400x-56x^3-7000+280x^2=0\)
\(\Leftrightarrow-92x^3+460x^2+2300x-11500=0\)
\(\Leftrightarrow92x^3-460x^2-2300x+11500=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=5\end{cases}}\)
a) Thay x = 3 vào bất phương trình ta được: 2.3 + 3 < 9 <=> 9 < 9 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình2x + 3 < 9
b) Thay x = 3 vào bất phương trình ta có: -4.3 > 2.3 + 5 => -12 > 11 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình -4x > 2x + 5
c) Thay x = 3 vào bất phương trình ta có: 5 - 3 > 3.3 -12 => 2 > -3 (khẳng định đúng)
Vậy x = 3 là nghiệm của bất phương trình 5 - x > 3x - 12
\(\frac{x^3-4x^2+5x-20}{x^3-x^2-10x-8}>0\) \(\left(đkxđ:x\ne4;x\ne-1;x\ne-2\right)\)
\(\Leftrightarrow\frac{x^2\left(x-4\right)+5\left(x-4\right)}{x^3-4x^2+3x^2-12x+2x-8}>0\)
\(\Leftrightarrow\frac{\left(x-4\right)\left(x^2+5\right)}{x^2\left(x-4\right)+3x\left(x-4\right)+2\left(x-4\right)}>0\)
\(\Leftrightarrow\frac{\left(x-4\right)\left(x^2+5\right)}{\left(x-4\right)\left(x^2+3x+2\right)}>0\)
\(\Leftrightarrow\frac{x^2+5}{x^2+x+2x+2}>0\)
\(\Leftrightarrow\frac{x^2+5}{x\left(x+1\right)+2\left(x+1\right)}>0\)
\(\Leftrightarrow\frac{x^2+5}{\left(x+1\right)\left(x+2\right)}>0\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)>0\) (do x2+5>0)
\(\Leftrightarrow\) \(\hept{\begin{cases}x+1>0\\x+2>0\end{cases}}\) hoặc \(\hept{\begin{cases}x+1< 0\\x+2< 0\end{cases}}\)
\(\Leftrightarrow\) \(x>-1\) hoặc \(x< -2\)
Kết hợp với đkxđ: \(x\ne4;x\ne-1;x\ne-2\)ta có:
\(\hept{\begin{cases}x>-1\\x\ne4\end{cases}}\)hoặc \(x< -2\)
\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}\\\end{cases}}\\\hept{\begin{cases}\\\end{cases}}\end{cases}}\)
ĐK: x \(\ne\)-1; x \(\ne\)4; x \(\ne\)-2
\(\frac{x^3-4x^2+5x-20}{x^3-x^2-10x-8}>0\)
<=> \(\frac{\left(x^2+5\right)\left(x-4\right)}{x^3-4x^2+3x^2-12x+2x-8}>0\)
<=> \(\frac{\left(x^2+5\right)\left(x-4\right)}{\left(x-4\right)\left(x^2+3x+2\right)}>0\)
<=> \(\frac{x^2+5}{\left(x+2\right)\left(x+1\right)}>0\)
Do x2 + 5 > 0 => (x + 2)(x + 1) > 0
<=> \(\hept{\begin{cases}x+2>0\\x+1>0\end{cases}}\)hoặc \(\hept{\begin{cases}x+2< 0\\x+1< 0\end{cases}}\)
<=> \(\hept{\begin{cases}x>-2\\x>-1\end{cases}}\)hoặc \(\hept{\begin{cases}x< -2\\x< -1\end{cases}}\)
<=> \(\orbr{\begin{cases}x>-1\\x< -2\end{cases}}\)