1.Tìm x, biết:
1+3+5+...+x=81
2.A= 3+3^2+3^3+...+3^2006
a, Tính A.
b, Tìm x để: 2A+3=3x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
b) ĐKXĐ: \(x\ne3\)
Ta có: \(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)
\(\Leftrightarrow\dfrac{x-3}{-20}=\dfrac{-5}{x-3}\)
\(\Leftrightarrow\left(x-3\right)^2=100\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=10\\x-3=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\left(nhận\right)\\x=-7\left(nhận\right)\end{matrix}\right.\)
Vậy: \(x\in\left\{13;-7\right\}\)
\(a,A=\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{x-2-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\\ A=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\\ A=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
a) |x - 5| - 2x = 3
| x - 5| = 3 + 2x
=> x - 5 = 3 + 2x hoặc x - 5 = -3 - 2x
=> -5 - 3 = 2x - x -5 + 3 = -2x - x
=> x = -8 -2 = -3x
=> x = 2/3
b) |2x - 1| + 3x = 1
|2x - 1| = 1 - 3x
=> 2x - 1 = 1 - 3x hoặc 2x - 1 = -1 + 3x
=> -1 - 1 = -3x - 2x -1 + 1 = 3x - 2x
=> -2 = -5x 0 = x
=> x = 2/5
c) | x - 5| = 3x - 2
=> x - 5 = 3x - 2 hoặc x - 5 = -3x + 2
=> -5 + 2 = 3x - x -5 - 2 = -3x - x
=> -3 = 2x -7 = -4x
=> x = -3/2 x = 7/4
d) |9 - 7x| = 5x - 3
=> 9 - 7x = 5x - 3 hoặc 9 - 7x = -5x + 3
=> 9 + 3 = 5x + 7x 9 - 3 = -5x + 7x
=> 12 = 12x 6 = 2x
=> x = 1 x = 3
\(Bài.44:\\ a,3x-7=0\\ \Leftrightarrow3x=7\\ \Leftrightarrow x=\dfrac{7}{3}\\ b.2x^2+9=0\\ \Leftrightarrow x^2=-\dfrac{9}{2}\left(vô.lí\right)\\ \Rightarrow Không.có.x.thoả.mãn\)
43:
a: \(A=2x\left(x^2-2x-3\right)-6x^2+5x-1+9x^2+3x+3\)
\(=2x^3-4x^2-6x+3x^2+8x+2\)
\(=2x^3-x^2+2x+2\)
b: \(\dfrac{A}{2x-1}=\dfrac{x^2\left(2x-1\right)+2x-1+3}{2x-1}=x^2+1+\dfrac{3}{2x-1}\)
Thương là x^2+1
Dư là 3
c: A chia hết cho 2x-1
=>3 chia hết cho 2x-1
=>2x-1 thuộc {1;-1;3;-3}
=>x thuộc {1;0;2;-1}
1a)1+2+3+...+x=0
\(\frac{x.\left(x+1\right)}{2}\)=0
x.(x+1) =0:2
x.(x+1) =0
x.(x+1) =0.1
vây x=0
tich dung cho minh nha
a) Ta có : \(3A=3^{2007}+3^{2006}+...+3^3+3^2\)
A = \(3^{2006}+...+3^3+3^2+3\)
\(\Rightarrow2A=3^{2007}-3\)
\(\Rightarrow A=\frac{3^{2007}-3}{2}\)
b) Ta có \(2A=3^{2007}-3\)\(\Rightarrow2A+3=3^{2007}\)
Theo bài ta có: \(2A+3=3x\)
\(\Rightarrow3^{2007}=3x\)
\(\Rightarrow3.3^{2006}=3x\)
\(\Rightarrow x=3^{2006}\)