Cho a, b, c, d > 0. CMR \(\frac{a^4}{a^3+2b^3}+\frac{b^4}{a^3+2b^3}+\frac{c^4}{c^3+2d^3}+\frac{d^4}{d^3+2a^3}\ge\frac{a+b+c+d}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo (hoàn toàn dùng Cô-si):
Câu hỏi của Trần Anh Thơ - Toán lớp 8 | Học trực tuyến
\(\frac{a^4}{a^3+2b^3}=a-\frac{2ab^3}{a^3+b^3+b^3}\ge a-\frac{2ab^3}{3\sqrt[3]{a^3.b^3.b^3}}=a-\frac{2}{3}b\)
Tương tự ta có
\(\frac{b^4}{b^3+2c^3}\ge b-\frac{2}{3}c\) ; \(\frac{c^4}{c^3+2d^3}\ge c-\frac{2}{3}d\) ; \(\frac{d^4}{d^3+2a^3}\ge d-\frac{2}{3}a\)
Cộng vế với vế:
\(VT\ge a+b+c+d-\frac{2}{3}\left(a+b+c+d\right)=\frac{a+b+c+d}{3}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=d\)
1.
\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)
\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
Dấu "=" khi \(a=b=c\)
2.
\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)
Dấu "=" khi \(a=b=c=d\)
Nếu bài toán ko yêu cầu a, b, c, d >= 1:
\(4=ab+bc+cd+da=\left(a+c\right)\left(b+d\right)\le\frac{\left(a+c+b+d\right)^2}{4}\)
\(\Rightarrow\left(a+b+c+d\right)^2\ge16\Rightarrow a+b+c+d\ge4\)
\(\frac{a^4}{a^3+2b^3}=\frac{a\left(a^3+2b^3\right)-2ab^3}{a^3+2b^3}=a-\frac{2ab^3}{a^3+b^3+b^3}\ge a-\frac{2ab^3}{3\sqrt[3]{a^3.b^3.b^3}}=a-\frac{2}{3}b\)
Tương tự với các cụm còn lại, công theo vế và áp dụng \(a+b+c+d\ge4\), ta được đpcm.