\(1^2+2^2+3^2+4^2+........+19^2+20^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi hình như bạn ghi đề sai
Cái này chỉ cần bỏ ngoặc ghép cặp lại rồi tính là được mà, mỗi cặp = 1
\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}{\dfrac{19}{1}+\dfrac{18}{2}+\dfrac{17}{3}+....+\dfrac{1}{19}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}{1+\left(\dfrac{18}{2}+1\right)+\left(\dfrac{17}{3}+1\right)+\left(\dfrac{1}{19}+1\right)}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}{1+\dfrac{20}{2}+\dfrac{20}{3}+...+\dfrac{20}{19}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}{20.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)}\)
\(=\dfrac{1}{20}\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{18.19}+\frac{2}{19.20}\)
\(=2\cdot\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(=2\cdot\left(1-\frac{1}{20}\right)\)
\(=2\cdot\frac{19}{20}=\frac{19}{10}\)
câu 1:
2 + 2^2 + 2^3 + ... + 2^20 = 2( 1 + 2 + 2^2 +... + 2^19) chia hết cho 2
câu 2
2 + 2^2 + 2^3 + 2^4 +... + 2^19 + 2^20
= ( 2 + 2^2) + ( 2^3 + 2^4) + ....+ ( 2^19 + 2^20)
= 2( 1 + 2 ) + 2^3( 1+3) +...+ 2^19(1+2)
= 2. 3 + 2^3 . 3 +...+2^19.3
= 3.(2+2^3+2^5+....+2^19) chia hết cho 3
\(a.2+2^2+2^3+...+2^{19}\)\(+2^{20}\)
Ta có: \(2⋮2,2^2,2^3⋮2,..2^{19}⋮2,2^{20}⋮2\)
\(\Rightarrow2+2^2+2^3+...+2^{19}+2^{20}⋮2\)
b.Giống trên
1.(2 - 1)+2.(3 - 1)+3.(4 - 1)+....+20.(20 + 1 - 1)=[(1.2 +2.3 + 3.4 +4.5 + ....+20.(20+1)] - (1 + 2 +3 + ... +20)=\(\frac{20.\left(20+1\right).\left(20.2+1\right)}{6}\)
=2870
Đặt\(A=1^2+2^2+3^2+...+20^2\)
Ta có \(A=1\cdot\left(2-1\right)+2\cdot\left(3-1\right)+3\cdot\left(4-1\right)+...+20\cdot\left(21-1\right)\)
\(A=\left(1\cdot2+2\cdot3+...+20\cdot21\right)-\left(1+2+3+...+20\right)\)
\(A=B-C\)(với \(B=\left(1\cdot2+2\cdot3+...+20\cdot21\right);C=\left(1+2+3+...+20\right)\)
Dễ nhận thấy \(C=1+2+3+...+20=\frac{20\cdot21}{2}=10\cdot21=210\)
Xét \(3B=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+20\cdot21\cdot\left(22-19\right)\)
\(3B=\left(1\cdot2\cdot3+2\cdot3\cdot4+...+20\cdot21\cdot22\right)-\left(1\cdot2\cdot3+2\cdot3\cdot4+...+19\cdot20\cdot21\right)\)
\(3B=20\cdot21\cdot22\Leftrightarrow B=20\cdot7\cdot22=3080\)
Vậy \(A=B-C=3080-210=2870\)
Nhận xét: Phương pháp giải
Tính A bằng cách đưa về những dãy số đã biết cách tính
Tính B bằng cách khử liên tiếp: số hạng sau sẽ khử số hạng liền trước.
Chúc bạn học tốt!
1) \(\dfrac{1}{2}+\dfrac{13}{19}-\dfrac{4}{9}+\dfrac{6}{19}+\dfrac{5}{18}\)
\(=\dfrac{1}{2}+\left(\dfrac{13}{19}+\dfrac{6}{19}\right)-\dfrac{4}{9}+\dfrac{5}{18}\)
\(=\dfrac{3}{2}-\dfrac{4}{9}+\dfrac{5}{18}\)
\(=\dfrac{19}{18}+\dfrac{5}{18}\)
\(=\dfrac{24}{18}\)
\(=\dfrac{4}{3}\)
2) \(\dfrac{-20}{23}+\dfrac{2}{3}-\dfrac{3}{23}+\dfrac{2}{5}+\dfrac{7}{15}\)
\(=\left(-\dfrac{20}{23}-\dfrac{3}{23}\right)+\dfrac{2}{3}+\dfrac{2}{5}+\dfrac{7}{15}\)
\(=-1+\dfrac{2}{3}+\dfrac{2}{5}+\dfrac{7}{15}\)
\(=-\dfrac{1}{3}+\dfrac{2}{5}+\dfrac{7}{15}\)
\(=\dfrac{1}{15}+\dfrac{7}{15}\)
\(=\dfrac{8}{15}\)
3) \(\dfrac{4}{3}+\dfrac{-11}{31}+\dfrac{3}{10}-\dfrac{20}{31}-\dfrac{2}{5}\)
\(=\left(\dfrac{-11}{31}-\dfrac{20}{31}\right)+\dfrac{4}{3}+\dfrac{3}{10}-\dfrac{2}{5}\)
\(=-1+\dfrac{4}{3}+\dfrac{3}{10}-\dfrac{2}{5}\)
\(=\dfrac{1}{3}+\dfrac{3}{10}-\dfrac{2}{5}\)
\(=\dfrac{1}{3}-\dfrac{1}{10}\)
\(=\dfrac{7}{30}\)
4) \(\dfrac{5}{7}.\dfrac{5}{11}+\dfrac{5}{7}.\dfrac{2}{11}-\dfrac{5}{7}.\dfrac{14}{11}\)
\(=\dfrac{5}{7}.\left(\dfrac{5}{11}+\dfrac{2}{11}-\dfrac{14}{11}\right)\)
\(=\dfrac{5}{7}.-\dfrac{7}{11}\)
\(=-\dfrac{35}{77}\)
\(=-\dfrac{5}{11}\)