K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2018

Có \(\frac{1}{1.2.3}=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)\)

      \(\frac{1}{2.3.4}=\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)\)

   ...

      \(\frac{1}{17.18.19}=\frac{1}{2}\left(\frac{1}{17.18}-\frac{1}{18.19}\right)\)

=>\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{17.18.19}\)=\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{17.18}-\frac{1}{18.19}\right)\)

                                                                           \(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{18.19}\right)=\frac{1}{2}.\frac{1}{2}-\frac{1}{2}.\frac{1}{18.19}< \frac{1}{4}\)

27 tháng 4 2017

A= \(\frac{1}{1.2.3}\)\(\frac{1}{2.3.4}\)+ ... + \(\frac{1}{19.20.21}\)\(\frac{1}{4}\)

  = 1 - \(\frac{1}{2}\)\(\frac{1}{3}\)\(\frac{1}{2}\)-  \(\frac{1}{3}\)\(\frac{1}{4}\)+ ... + \(\frac{1}{19}-\frac{1}{20}-\frac{1}{21}\)

  = 1 - ( \(\frac{1}{2}-\frac{1}{3}\)\(\frac{1}{2}-\frac{1}{3}\)) + ... + ( \(\frac{1}{19}-\frac{1}{20}+\frac{1}{19}-\frac{1}{20}\))  - \(\frac{1}{21}\)

  = 1 - \(\frac{1}{21}\)

  =  \(\frac{20}{21}\)<  \(\frac{1}{4}\)

=> Đề bài có sai ko bạn?

2B=\(\frac{2}{1.2.3}\)+.....+\(\frac{2}{18.19.20}\)

2B=\(\frac{1}{1.2}\)-\(\frac{1}{2.3}\)+\(\frac{1}{2.3}\)-\(\frac{1}{3.4}\).......+\(\frac{1}{18.19}\)-\(\frac{1}{19.20}\)

2B=\(\frac{1}{1.2}\)-\(\frac{1}{19.20}\)

B=\(\frac{1}{1.2}\):2-\(\frac{1}{19.20}\):2

B=\(\frac{1}{1.2}\).\(\frac{1}{2}\)-\(\frac{1}{19.20}\).\(\frac{1}{2}\)

=\(\frac{1}{4}\)-\(\frac{1}{19.20.2}\)<\(\frac{1}{4}\)

\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)

\(2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\)

\(2B=\frac{1}{1.2}-\frac{1}{19.20}\)

\(B=\left(\frac{1}{2}-\frac{1}{19.20}\right):2\)

\(B=\frac{189}{760}\)

24 tháng 4 2016

đặt A=1/1.2.3+1/2.3.4+..+1/18.19.20

         =1/2(2/1.2.3+1/2.3.4+...+1/18.19.20)

         =1/2.(1/1.2-1/2.3+1/2.3-1/3.4+...+1/18.19-1/19.20)

         =1/2(1/1.2-1/19.20)

         =1/2.1/20

         =1/40

Mà 1/40<1/4

=>A<1/4

=

30 tháng 3 2016

A=1/2{(1/1*2-1/2*3)+(1/2*3-1/3*4)+(1/3*4-1/4*5)+...+(1/18*19-1/19*20)}
  =1/2{1/1*2-1/19*20}
  =1/2*189/380
  =189/760
vì 189/760<1/4
nên A=...<1/4

20 tháng 3 2016

$\frac{4}{n\left(n+2\right)\left(n+4\right)}=\frac{n+4-n}{n\left(n+2\right)\left(n+4\right)}=\frac{1}{n\left(n+2\right)}-\frac{1}{\left(n+2\right)\left(n+4\right)}$4n(n+2)(n+4) =n+4−nn(n+2)(n+4) =1n(n+2) −1(n+2)(n+4) $\frac{B}{9}=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{25.27}-\frac{1}{27.29}=\frac{1}{3}-\frac{1}{27.29}<\frac{1}{3}$B9 =11.3 −13.5 +13.5 −15.7 +...+125.27 −127.29 =13 −127.29 <13 $\Rightarrow B<3$

26 tháng 6 2021

bai nay mik lam sai roi nha

26 tháng 6 2021

      \(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{37.38.39}\right).1428+185.8\)

\(=\frac{2}{2}.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\right).1428+185.8\)

\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{37.38.39}\right).1428+1480\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\right).1428+1480\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{38.39}\right).1428+1480\)

\(\frac{1}{2}.\frac{370}{741}.1428+1480\)

\(=\frac{185}{741}.1428+1480\)

\(=356,52+1480=1836,52\)

chỗ\(\frac{185}{741}.1428\)mk làm tròn số lun á nha

mk ko chắc tính đúng hay sai nha nhưng cách làm thì kiểu vậy

11 tháng 7 2015

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}=\frac{1}{2}\cdot\left(\frac{1}{1.2}-\frac{1}{2.3}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)=\frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{19.20}\right)=\frac{1}{4}-\frac{1}{2.19.20}<\frac{1}{4}\)

B=\(\frac{36}{1.3.5}+\frac{36}{3.5.7}+\frac{36}{5.7.9}+...+\frac{36}{25.27.29}< 3\)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 

24 tháng 3 2016

Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)

\(\Rightarrow2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{18.19.20}\)

\(=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\left(\frac{1}{18.19}-\frac{1}{19.20}\right)\)

\(=\frac{1}{2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\)

\(=\frac{1}{2}-\frac{1}{19.20}<\)\(\frac{1}{2}\)

\(2A<\)\(\frac{1}{2}\)

\(\Rightarrow A<\)\(\frac{1}{4}\)

Vậy \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}<\)\(\frac{1}{4}\)

27 tháng 3 2019

3. \(M=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{10.11.12}\)

\(\Leftrightarrow2M=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{10.11.12}\)

\(\Leftrightarrow2M=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{10.11}-\frac{1}{11.12}\)

\(\Leftrightarrow2M=\frac{1}{1.2}-\frac{1}{11.12}\)

\(\Leftrightarrow2M=\frac{1}{2}-\frac{1}{132}\)

\(\Leftrightarrow2M=\frac{65}{132}\)

\(\Leftrightarrow M=\frac{65}{132}\div2\)

\(\Leftrightarrow M=\frac{65}{264}\)

27 tháng 3 2019

1\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{899}{900}\)

\(\Leftrightarrow A=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{29.31}{30.30}\)

\(\Leftrightarrow A=\frac{1.3.2.4.3.5...29.31}{2.2.3.3.4.4...30.30}\)

\(\Leftrightarrow A=\frac{\left(1.2.3....29\right)\left(3.4.5...31\right)}{\left(2.3.4...30\right)\left(2.3.4...30\right)}\)

\(\Leftrightarrow A=\frac{1.31}{30.2}\)

\(\Leftrightarrow A=\frac{31}{60}\)