K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2016

a) Vì bình phương của 1 số lẻ là 1 số lẻ;bình phương của 1 số chẵn là 1 số chẵn

mà A có 51 số lẻ=) tổng của chúng là 1 số lẻ

A có 50 số chẵn =) tổng chúng là 1 số chẵn

=) tổng của cả số lẻ và số chẵn là 1 số lẻ 

hay nói cách khác A là 1 số lẻ.

3 tháng 10 2015

 

3/ Ta có: A=xxyy=1000x+100x+10y+y=1100x+11y=11(100x+y)

Đề A là scp thì 100x+y =11.t2 (t thuộc Z) (1)

Ta có: 1=<x=<9 <=>100=<100x=<900(2)

                0=<y=<9 (3)

Từ (2) và (3)=> 100=<100x+y=<909 (4)

Từ (1) và (4)=> 100x+y thuộc {176;275;396;539;704;891}

Mà 100x+y là số có dạng x0y(có dấu gạch trên đầu)

Do đó, x0y=704=> x=7 và y= 4

 

8 tháng 4 2015

Bài 2:

a/ gọi 3 số chính phương liên tiếp đó là: (x-1)2;x2;(x+1)2

Ta có: (x-1)2+x2+(x+1)2= x2-2x+1+x2+x2+2x+1= 3x2+2 

=> Tổng 3 số cp liên tiếp chia 3 dư 2

c/ Gọi 2 số lẻ đó là (2x-1)2 và (2x+1)2

(2x-1)2+(2x+1)2= 4x2-4x+1 +4x2+4x+1

                       = 8x2+2=2(4x2+1)

Ta có: 2 chia hết cho 2

=> 2(4x2+1) là scp thì 4x2+1 chia hết cho 2

mà 4x2+1 là số lẻ nên không chia hết cho 2

Do đó. tồng bình phương của 2 số lẻ bất kì không phải là số chính phương

 

27 tháng 12 2017

A=\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+2}+..........+\frac{2018}{2017^2+2017}\)

>\(\frac{2018}{2017^2+2017}+\frac{2018}{2017^2+2017}+........+\frac{2018}{2017^2+2017}\)

\(=\frac{2018}{2017^2+2017}.2017=\frac{2018.2017}{2017\left(2017+1\right)}=1\)                                  (1)

Lại có:A<\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+1}+.........+\frac{2018}{2017^2+1}\)

\(=\frac{2018}{2017^2+1}.2017=\frac{2018.2017}{2017^2+1}=\frac{2017.\left(2017+1\right)}{2017^2+1}\)

\(=\frac{2017^2+2017}{2017^2+1}=\frac{2017^2+1+2016}{2017^2+1}=1+\frac{2016}{2017^2+1}< 2\)                 (2)

Từ (1) và (2) suy ra:1 < A < 2

Vậy A không phải là số nguyên

18 tháng 6 2018

vui nhi

25 tháng 8 2020

1. \(M=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)+1\)

\(=\left[\left(a+1\right)\left(a+4\right)\right]\left[\left(a+2\right)\left(a+3\right)\right]+1\)

\(=\left(a^2+5a+4\right)\left(a^2+5a+6\right)+1\)

\(=\left(a^2+5a+4\right)^2+2\left(a^2+5a+4\right)+1\)

\(=\left(a^2+5a+5\right)^2\) 

=> Đpcm

25 tháng 8 2020

M = ( a + 1 )( a + 2 )( a + 3 )( a + 4 ) + 1

    = [ ( a + 1 )( a + 4 ) ][ ( a + 2 )( a + 3 ) ] + 1

    = [ a2 + 5a + 4 ][ a2 + 5a + 6 ] + 1

Đặt t = a2 + 5a + 4

M <=> t[ t + 2 ] + 1

      = t2 + 2t + 1

      = ( t + 1 )2

      = ( a2 + 5a + 4 + 1 )2 = ( a2 + 5a + 5 )2 ( đpcm )

( x2 + x + 1 )( x2 + x + 2 ) - 12 (*)

Đặt t = x2 + x + 1

(*) <=> t( t + 1 ) - 12

       = t2 + t - 12

       = t2 - 3t + 4t - 12

       = t( t - 3 ) + 4( t - 3 )

       = ( t - 3 )( t + 4 )

       = ( x2 + x + 1 - 3 )( x2 + x + 1 + 4 )

       = ( x2 + x - 2 )( x2 + x + 5 )

       = ( x2 + 2x - x - 2 )( x2 + x + 5 )

       = [ x( x + 2 ) - 1( x + 2 ) ]( x2 + x + 5 )

       = ( x + 2 )( x - 1 )( x2 + x + 5 )