Chung minh rang:(x-y)+(z-t)=(x+z)-(y+t)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng ngau ta có :
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{t}=\dfrac{x+y+z}{y+z+t}\)
\(\Rightarrow\dfrac{x.y.z}{y.z.t}=(\dfrac{x+y+z}{y+z+t})^3\)
\(\Rightarrow\dfrac{x}{t}=(\dfrac{x+y+z}{y+z+t})^3\)
\(\Rightarrowđpcm\)
Áp dụng BĐT Cô-si cho 2 số dương, ta có:
\(18x+\frac{2}{x}\ge2\sqrt{18x.\frac{2}{x}}=12\)
Chứng minh tương tự, ta có
\(18y+\frac{2}{y}\ge12\)
\(18z+\frac{2}{z}\ge12\)
Từ đó suy ra \(18\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge36\)(*)
Lại có \(x+y+z\le1\Rightarrow-\left(x+y+z\right)\ge-1\)(**)
Từ (*) và (**) suy ra \(18\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\left(x+y+z\right)\ge36-1\)
\(\Leftrightarrow17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)
Vậy \(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)với \(x+y+z\le1\)