So sánh ko dùng phép tính: 2006/2007 + 2007/2008 + 2008/2006 với 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2006}\)
\(=\frac{2007-1}{2007}+\frac{2008-1}{2008}+\frac{2009-1}{2009}+\frac{2006+3}{2006}\)
\(=1-\frac{1}{2007}+1-\frac{1}{2008}+1-\frac{1}{2009}+1+\frac{3}{2006}\)
\(=\left(1+1+1+1\right)-\left(\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}-\frac{3}{2006}\right)\)
\(< 4-\left(\frac{1}{2009}+\frac{1}{2009}+\frac{1}{2009}-\frac{3}{2009}\right)\)
\(=4\)
=> A < 4
Vậy A < 4
Vì 2006/2007 ; 2007/2008 ; 2008/2009 ; 2009/2010 đều bé hơn 1 nên:
2006/2007 + 2007/2008 + 2008/2009 + 2009/2010 < 1 + 1 + 1 + 1 = 4.
Vậy ...
\(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2006}\)
\(A=1-\frac{1}{2007}+1-\frac{1}{2008}+1-\frac{2}{2006}\)
\(A=\left(1+1+1\right)+\left(\frac{1}{2006}-\frac{1}{2007}\right)+\left(\frac{1}{2006}-\frac{1}{2008}\right)\)
\(A=3+\left(\frac{1}{2006}-\frac{1}{2007}\right)+\left(\frac{1}{2006}-\frac{1}{2008}\right)\)
Ta thấy : \(\frac{1}{2006}-\frac{1}{2007}>0\); \(\frac{1}{2006}-\frac{1}{2008}>0\)\(\Rightarrow A>3\)
\(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2006}=1-\frac{1}{2007}+1-\frac{1}{2008}+1+\frac{2}{2006}=3+\left(\frac{1}{2006}-\frac{1}{2007}\right)+\left(\frac{1}{2006}-\frac{1}{2008}\right)\)
Vì 2006<2007, 2006<2008 nên \(\frac{1}{2006}>\frac{1}{2007};\frac{1}{2006}>\frac{1}{2008}=>\frac{1}{2006}-\frac{1}{2007}>0,\frac{1}{2006}-\frac{1}{2008}>0\)
=> \(A=3+\left(\frac{1}{2006}-\frac{1}{2007}\right)+\left(\frac{1}{2006}-\frac{1}{2008}\right)>3=>A>3\)
bạn ơi cái dấu bằng to và dấu lớn to là dấu suy ra ak
\(\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2006}\)
\(\Rightarrow\frac{2008}{2006}>1\)
\(\frac{2006}{2007}< 1;\frac{2007}{2008}< 1\)
\(\Rightarrow\frac{2006}{2007}+\frac{2007}{2008}< 2\)
\(\Rightarrow\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2006}< 3\)
A =2006/2007+2007/2008+2008/2006
= \(\frac{2006}{2007}\)+ \(\frac{2007+1}{2008}\)+ \(\frac{2008}{2006+2}\)
= 1 - \(\frac{1}{2007}\)+ 1 - \(\frac{1}{2008}\)+ 1 + \(\frac{1}{2006}\)+ \(\frac{1}{2006}\)
= 3 + ( \(\frac{1}{2006}\)- \(\frac{1}{2007}\)) + ( \(\frac{1}{2006}\)- \(\frac{1}{2008}\))
vì \(\frac{1}{2006}\)> \(\frac{1}{2007}\), \(\frac{1}{2006}\)> \(\frac{1}{2008}\)nên A > 3
2.006/2.007 + 2.007/2.008 < 2006 + 2.007/2.007 + 2.008
Chúc bạn học tốt.
😁😁😁
ta thấy: 2008/2006>1
=>2006/2007+2007/2008+2008/2006>1
Vậy 2006/2007+2007/2008+2008/2006>1
***nhé