K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2018

\(A=\frac{2n-1}{3n}=>3A=\frac{6n-3}{3n}=2-\frac{1}{n}\)

Để A nguyên => 3A nguyên => 1 chia hết cho n => n=-1 và n=1

+/ n=-1 => 3A=3 => A = 1 (nhận)

+/ n=-1 => 3A=1 => A = 1/3 (Loại)

Đáp số: n= -1

Để A là số nguyên thì 2n^2-n+4n-2+5 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{1;0;3;-2\right\}\)

7 tháng 1 2023

      `2n^2+3n+3 | 2n-1`

`-`   `2n^2-n`           `n+2`

     ------------------

                `4n+3`

          `-`   `4n-2`

              ------------

                       `5`

`<=> (2n^2+3n+3) : (2n-1)=5`

`<=> 5 ⋮ (2n-1)=> 2n-1 ∈ Ư(5)`\(=\left\{1,5\right\}\)

`+, 2n-1=1=>2n=2=>n=1`

`+, 2n-1=-1=>2n=0=>n=0`

`+, 2n-1=5=>2n=6=>n=3`

`+,2n-1=-5=>2n=-4=>n=-2`

vậy \(n\in\left\{1;0;3;-2\right\}\)

AH
Akai Haruma
Giáo viên
27 tháng 4 2023

Lời giải:

Để $A=\frac{2n-1}{3n-2}$ nguyên thì:

$2n-1\vdots 3n-2$

$\Rightarrow 3(2n-1)\vdots 3n-2$

$\Rightarrow 6n-3\vdots 3n-2$

$\Rightarrow 2(3n-2)+1\vdots 3n-2$

$\Rightarrow 1\vdots 3n-2$

$\Rightarrow 3n-1\in\left\{\pm 1\right\}$

$\Rightarrow n\in\left\{0; \frac{2}{3}\right\}$

Mà $n$ nguyên nên $n=0$

Thử lại thấy đúng.

21 tháng 4 2024

n=1

 

DD
16 tháng 6 2021

a) \(A=\frac{3-n}{n+1}=\frac{4-1-n}{n+1}=\frac{4}{n+1}-1\inℤ\)mà \(n\inℤ\)suy ra \(n+1\inƯ\left(4\right)=\left\{-4,-2,-1,1,2,4\right\}\)

\(\Leftrightarrow n\in\left\{-5,-3,-2,0,1,3\right\}\).

b) \(B=\frac{6n+5}{3n+2}=\frac{6n+4+1}{3n+2}=2+\frac{1}{3n+2}\inℤ\)mà \(n\inℤ\)suy ra \(3n+2\inƯ\left(1\right)=\left\{-1,1\right\}\)

\(\Rightarrow n\in\left\{-1\right\}\)

c) \(C\inℤ\Rightarrow3C=\frac{6n+3}{3n+2}=\frac{6n+4-1}{3n+2}=2-\frac{1}{3n+2}\inℤ\) mà \(n\inℤ\)suy ra 

.\(3n+2\inƯ\left(1\right)=\left\{-1,1\right\}\)\(\Rightarrow n\in\left\{-1\right\}\)

Thử lại thỏa mãn. 

15 tháng 3 2023

Để 3n-1/2n+1 ∈ Z thì 3n-1⋮2n+1

Mà 2n+1 ⋮2n+1 => (3n-1)-(2n+1)⋮2n+1 => n-2⋮2n+1=> 2(n-2)⋮2n+1

=> 2n-4 ⋮2n+1

Mà 2n+1 ⋮2n+1 => (2n+1)-(2n-4) ⋮2n+1 =>5 ⋮2n+1

Mà n ∈ Z => 2n+1 ∈ Z

=> 2n+1 ∈ {1; 5; -1; -5}

=> n ∈ {0; 2; -1; -3}

Thử lại thỏa mãn.

Vậy n ∈ {0; 2; -1; -3}

5 tháng 8 2020

Đặt \(A=\frac{2n^2+3n+3}{2n-1}\), ta có :

\(A=\frac{2n^2+3n+3}{2n-1}=\frac{n\left(2n-1\right)+2n-1+4}{2n-1}==n+1+\frac{4}{2n-1}\)

Vì A nguyên nên \(\frac{4}{2n-1}\in Z\)

\(\Rightarrow2n-1\in\left\{-4;-2;-1;1;2;4\right\}\)

\(\Rightarrow2n\in\left\{-3;-1;0;2;3;5\right\}\)

Vì n nguyên 

\(\Rightarrow2n\in\left\{0;2\right\}\)

\(\Rightarrow n\in\left\{0;1\right\}\)

5 tháng 8 2020

Để \(\frac{2n^2+3n+3}{2n-1}\in Z\)   

=> \(2n^2+3n+3⋮2n-1\)

=> \(4n^2+6n+6⋮\left(2n-1\right)\)

=> \(\left(4n^2-1\right)+\left(6n-3\right)+10⋮\left(2n-1\right)\)

Do \(4n^2-1=\left(2n-1\right)\left(2n+1\right)⋮\left(2n+1\right);6n-3=3\left(2n-1\right)⋮\left(2n-1\right)\)

=> \(10⋮\left(2n-1\right)\)

=> 2n-1 là ước của 10 \(\in\pm1;2;5;10\)và do 2n-1 là số lẻ => 2n-1 \(\in\pm1;5\)

=> n = ......