Tính
B=\(-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+....+\frac{1}{3^{50}}-\frac{1}{3^{51}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ dãy trên ta có:
(\(\frac{3}{2}\)+\(\frac{1}{2}\))+(\(\frac{8}{3}\)+\(\frac{2}{3}\))+......+(\(\frac{2600}{51}\)+\(\frac{1}{51}\)) < vì không có cách nhập hỗn số nên mình đổi ra phân số >
= 2 + 3 + 4 + 5 + 6 + ..........................+ 51
Từ 2 -> 51 có :( 51 - 2 ) : 1 + 1 = 50 số
Chia ra : 50 : 2 = 25 cặp
ta có( 51 + 2 ) x 25 =1325
Vậy tổng trên có kết quả bằng 1325 (tớ chỉ nghĩ thế thôi chứ sai đừng trách nhá.Đùa thôi,đúng đấy )
\(B=\frac{-1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\)
\(3B=-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{49}}-\frac{1}{3^{50}}\)
\(3B+B=\left(-1+\frac{1}{3}-...-\frac{1}{3^{50}}\right)+\left(-\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\right)\)
\(4B=-1-\frac{1}{3^{51}}\)
\(B=\frac{-1-\frac{1}{3^{51}}}{4}\)
hok tốt!!
\(B=-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\)
=> \(3B=-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{49}}-\frac{1}{3^{50}}\)
=> \(4B=-1-\frac{1}{3^{51}}=>B=-\frac{1+\frac{1}{3^{51}}}{4}\)
Bạn ơi,sao mik thấy không giống toán lớp 2
Kết bạn với mik nhé!Yêu bạn!
\(B=\frac{-1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\)
\(3B=-1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{49}}-\frac{1}{3^{50}}\)
\(3B+B=\left(-1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{49}}+\frac{1}{3^{50}}\right)\)
\(+\left(\frac{-1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\right)\)
\(4B=-1-\frac{1}{3^{51}}\)
\(B=\left(-1-\frac{1}{3^{51}}\right):4\)
\(B=\frac{-1}{4}\)
\(B=-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+....+\frac{1}{3^{50}}-\frac{1}{3^{51}}\)
\(3B=-1+\frac{1}{3}-\frac{1}{3^2}+......+\frac{1}{3^{49}}-\frac{1}{3^{50}}\)
\(3B+B=-1+\frac{1}{3}-\frac{1}{3^2}+......+\frac{1}{3^{49}}-\frac{1}{3^{50}}+\left(-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+.......+\frac{1}{3^{50}}+\frac{1}{3^{51}}\right)\)
\(4B=-1+\frac{1}{3}-\frac{1}{3^2}+.....+\frac{1}{3^{49}}-\frac{1}{3^{50}}-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+.......+\frac{1}{3^{50}}-\frac{1}{3^{51}}\)
\(4B=-1-\frac{1}{3^{51}}\)
cậu chưa tính hết nha vs lại bài này tớ làm đc ùi