K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2020

\(M=\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-a\right)}\)

Đánh giá đại diện: \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}-\frac{1}{a-c}\)

Tương tự: \(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}-\frac{1}{b-a}\)

                   \(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}-\frac{1}{c-b}\)

\(\Rightarrow M=\frac{1}{a-b}-\frac{1}{a-c}+\frac{1}{b-c}-\frac{1}{b-a}+\frac{1}{c-a}-\frac{1}{c-b}\)

\(\Rightarrow M=\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}+\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}\)

\(\Rightarrow M=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2N\left(đpcm\right)\)

25 tháng 6 2017

phần vết ở chỗ nào đấy

25 tháng 6 2017

là sao

NV
19 tháng 11 2019

\(VT=\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{1}{4}\left(\frac{ab}{a}+\frac{ab}{b}+\frac{bc}{b}+\frac{bc}{c}+\frac{ca}{c}+\frac{ca}{a}\right)\)

\(VT\le\frac{1}{4}\left(2a+2b+2c\right)=\frac{1}{2}\) (1)

Mặt khác \(\frac{bc}{a}+\frac{ac}{b}\ge2c\) ; \(\frac{bc}{a}+\frac{ab}{c}\ge2b\) ; \(\frac{ac}{b}+\frac{ab}{c}\ge2a\)

\(\Rightarrow2\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\Rightarrow\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge1\)

\(\Rightarrow VP=\frac{1}{4}\left(1+\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\ge\frac{1}{4}\left(1+1\right)=\frac{1}{2}\) (2)

Từ (1) và (2) suy ra đpcm

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

21 tháng 12 2016

hay

 

NV
9 tháng 3 2020

\(P=\sum\frac{1}{\sqrt{a^2+b^2-ab+b^2+b^2+1}}\le\sum\frac{1}{\sqrt{ab+b^2+2b}}=\sum\frac{2}{\sqrt{4b\left(a+b+2\right)}}\)

\(\Rightarrow P\le\sum\left(\frac{1}{4b}+\frac{1}{a+b+1+1}\right)\le\sum\left(\frac{1}{4b}+\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+1+1\right)\right)\)

\(\Rightarrow P\le\frac{3}{8}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{3}{8}\le\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

2.

\(1\ge\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{9}{3+a+b+c}\)

\(\Rightarrow a+b+c+3\ge6\Rightarrow a+b+c\ge6\)

\(P=\sum\frac{a^3}{a^2+ab+b^2}=\sum\left(a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\right)\ge\sum\left(a-\frac{ab\left(a+b\right)}{3ab}\right)\)

\(\Rightarrow P\ge\sum\left(\frac{2a}{3}-\frac{b}{3}\right)=\frac{1}{3}\left(a+b+c\right)\ge\frac{6}{3}=2\)

Dấu "=" xảy ra khi \(a=b=c=2\)

10 tháng 3 2020

Ta có : \(ab\le\frac{a^2+b^2}{2}\)

\(\Rightarrow a^2-ab+3b^2+1\ge\frac{a^2}{2}+\frac{5}{2}b^2+1\)

Lại có : \(\left(\frac{a^2}{2}+\frac{5}{2}b^2+1\right)\left(\frac{1}{2}+\frac{5}{2}b^2+1\right)\ge\left(\frac{a}{2}+\frac{5}{2}b+1\right)^2\)

\(\Rightarrow\sqrt{a^2-ab+3b^2+1}\ge\frac{a}{4}+\frac{5b}{4}+\frac{1}{2}\)

\(\Rightarrow\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{4}{a+b+b+b+b+b+1+1}\le\frac{4}{64}\left(\frac{1}{a}+\frac{5}{b}+2\right)\)

Khi đó :

\(P\le\frac{1}{16}\left(6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+6\right)\le\frac{3}{2}\)

Dấu " = " xay ra khi a=b=c=1

Vậy \(P_{Max}=\frac{3}{2}\) khi a=b=c=1