Tìm các cặp số nguyên x,y thoả mãn
a)\(\frac{x}{7}+\frac{1}{14}=-\frac{1}{y}\)
b)\(\frac{x}{9}+-\frac{1}{6}=-\frac{1}{y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\frac{-7}{12}\)< \(\frac{x-1}{4}\)< \(\frac{2}{3}\)
=> \(\frac{-7}{12}\)< \(\frac{3.\left(x-1\right)}{12}\)< \(\frac{8}{12}\)
=> 3 . ( x - 1 ) thuộc { - 6 ; - 5 ; - 4 ; - 3 ; - 2 ; - 1 ; 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7}
Lập bảng tính giá trị x , cái này dễ lên bạn tự làm nha
1/ \(-\frac{7}{12}< \frac{x-1}{4}< \frac{2}{3}\)
hay \(\frac{-7}{12}< \frac{3.\left(x-1\right)}{12}< \frac{8}{12}\)
Vậy \(-7< 3.\left(x-1\right)< 8\)
Vậy \(3.\left(x-1\right)\in\left\{-6;-5;-4;...;7\right\}\)
mà \(x\in Z\)nên \(3.\left(x-1\right)⋮3\)
Vậy \(3.\left(x-1\right)\in\left\{-6;-3;0;3;6\right\}\)
hay \(x-1\in\left\{-2;-1;0;1;2\right\}\)
tới đây dễ rồi thì làm nốt nhé, để thời gian làm mấy câu sau!
Hình như phần 1 đề sai.Nếu C nhỏ nhất thì n không có giá trị thuộc Z.Nếu C lớn nhất thì n=(-1)
2.a.x/7+1/14=(-1)/y
<=>2x/14+1/14=(-1)/y
<=>2x+1/14=(-1)/y
=>(2x+1).y=14.(-1)
<=>(2x+1).y=(-14)
(2x+1) và y là cặp ước của (-14).
(-14)=(-1).14=(-14).1
Ta có bảng giá trị:
2x+1 | -1 | 14 | 1 | -14 |
2x | -2 | 13 | 0 | -15 |
x | -1 | 13/2 | 0 | -15/2 |
y | 14 | -1 | -14 | 1 |
Đánh giá | chọn | loại | chọn | loại |
Vậy(x,y) thuộc{(-1;14);(0;-14)}
b.x/9+-1/6=-1/y
<=>2x/9+-3/18=-1/y
<=>2x+(-3)/18=-1/y
=>[2x+(-3)].y=-1.18
<=>(2x-3).y=-18
(2x-3) và y là cặp ước của -18
-18=-1.18=-18.1
Ta có bảng giá trị:
2x-3 | -1 | 18 | 1 | -18 |
2x | 2 | 21 | 4 | -15 |
x | 1 | 21/2 | 2 | -15/2 |
y | 18 | -1 | -18 | 1 |
Đánh giá | chọn | loại | chọn | loại |
Vậy(x;y) thuộc{(1;18);(4;-18)}
a) Ta có : \(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\)
\(\Rightarrow\frac{x}{3}-\frac{1}{5}=\frac{4}{y}\)
\(\Rightarrow\frac{x.5}{15}-\frac{3}{15}=\frac{4}{y}\)
\(\Rightarrow\frac{x.5-3}{15}=\frac{4}{y}\)
\(\Rightarrow\left(x.5-3\right).y=15.4\)
\(\Rightarrow x.5.y-3.5=60\)
\(\Rightarrow xy5-15=60\)
\(\Rightarrow xy5=60+15\)
\(\Rightarrow xy5=75\)
\(\Rightarrow xy=75\div5\)
\(\Rightarrow xy=15\)
\(\Rightarrow xy=1.15=3.5=\left(-15\right)\left(-1\right)=\left(-3\right)\left(-5\right)=\left(-5\right)\left(-3\right)=\left(-1\right)\left(-15\right)=5.3=15.1\)
Do đó x = 1 thì y = 15
x = 3 thì y =5
x = -15 thì y = -1
x = -3 thì y = -5
x = -5 thì y = -3
x = -1 thì y = -15
x = 5 thì y = 3
x = 15 thì y = 1
tham khảo https://olm.vn/hoi-dap/detail/2037215608.html
#Học-tốt
Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
=> \(\frac{xy+yz+xz}{xyz}=1\)
=> xy + yz + xz - xyz = 0 (1)
=> y(x + z) + xy(1 - z) = 0
=> y[x + z + (1 - z).x] = 0
=> \(\orbr{\begin{cases}y=0\left(\text{loại}\right)\\x+z+x\left(1-z\right)=0\end{cases}\Rightarrow x\left(2-z\right)+z=0\Rightarrow\left(x-1\right)\left(2-z\right)=-2}\)
Lại có \(x;z\inℕ^∗\Rightarrow\hept{\begin{cases}x-1\inℕ^∗\Leftrightarrow x>1\\2-z\inℕ^∗\Leftrightarrow z< 2\end{cases}}\)(2)
Từ (1) ta có : -2 = (-2).1 = (-1).2
Lập bảng xét các trường hợp
x - 1 | -1 | 2 | 1 | -2 |
2 - z | 2 | -1 | -2 | 1 |
x | 0(loại) | 3 | 2 | -3(loại) |
z | 0(loại) | 3 | 4 | 3 |
y | \(y\in\varnothing\) | 3 | 2 | 1(loại) |
Vậy các cặp (x;y;z) thỏa mãn là : (3;3;3) ; (2;4;2) ; (2;2;4) ; (4;2;2)
Bài này bạn đăng rồi Nguyễn Nhật Minh trả lời đúng rồi mà :
http://olm.vn/hoi-dap/question/314450.html
Có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{6xy}=\frac{1}{6}\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{1}{6xy}=\frac{1}{6}\)
\(\Leftrightarrow\frac{1}{6xy}=\frac{1}{6}-\frac{x+y}{xy}\)
\(\Leftrightarrow\frac{1}{6xy}=\frac{xy-6\left(x+y\right)}{6xy}\)
\(\Rightarrow1=xy-6\left(x+y\right)\)
\(\Leftrightarrow1=xy-6x-6y\)
\(\Leftrightarrow1+36=\left(xy-6x\right)-\left(6y-36\right)\)
\(\Leftrightarrow37=x\left(y-6\right)-6\left(y-6\right)\)
\(\Leftrightarrow37=\left(x-6\right)\left(y-6\right)\)
Vì \(x;y\inℤ\)nên x - 6 và y - 6 thuộc ước của 37
Ta có bảng sau:
\(x-6\) | \(1\) | \(-1\) | \(37\) | \(-37\) |
\(y-6\) | \(37\) | \(-37\) | \(1\) | \(-1\) |
\(x\) | \(7\) | \(5\) | \(43\) | \(-31\) |
\(y\) | \(43\) | \(-31\) | \(7\) | \(5\) |
Vậy ....
a) \(\frac{x}{7}+\frac{1}{14}=-\frac{1}{y}\)
\(\Rightarrow\frac{2x}{14}+\frac{1}{14}=\frac{-1}{y}\)
\(\Rightarrow\frac{2x+1}{14}=\frac{-1}{y}\)
\(\Rightarrow\left(2x+1\right).y=\left(-1\right).14=\left(-14\right)\)
Ta có bảng sau :
Vậy \(\left(x;y\right)\in\left\{\left(-1;14\right),\left(3;-2\right),\left(0;-14\right),\left(-4;2\right)\right\}\)
b) \(\frac{x}{9}+-\frac{1}{6}=-\frac{1}{y}\)
\(\Rightarrow\frac{2x}{18}+\frac{-3}{18}=\frac{-1}{y}\)
\(\Rightarrow\frac{2x-3}{18}=\frac{-1}{y}\)
\(\Rightarrow\left(2x-3\right).y=\left(-1\right).18=\left(-18\right)\)
Ta có bảng :
Vậy \(\left(x;y\right)\in\left\{\left(2;-18\right),\left(1;18\right),\left(3;-6\right),\left(0;6\right),\left(6;-2\right),\left(-3,2\right)\right\}\)