Tìm các cặp \(\left(x,y\right)\)nguyên thỏa mãn \(\left|4y^2-3\right|+\left|5-2x\right|=2013\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình gợi ý phần đầu nè. Xét \(x=0\) riêng được \(y=0\) hoặc \(y=1\).
Xét \(x\ne0\). Khi đó \(x\) và \(x^2+x+1\) nguyên tố cùng nhau với mọi \(x\) nguyên khác 0.
(Ở đây ta chỉ định nghĩa 2 số nguyên tố cùng nhau là 2 số có ước chung lớn nhất là 1 nên số âm vẫn được).
Để CM điều này ta gọi \(d=gcd\left(x^2+x+1,x\right)\) thì \(1⋮d\).
Vế trái là một số chia hết cho 4 nên trong 2 số \(x\) và \(x^2+x+1\) phải có một số chia hết cho 4
(Nếu mỗi số đều chia hết cho 2 thì không thể nguyên tố cùng nhau)
Trường hợp 1: \(x⋮4\) còn \(x^2+x+1\) lẻ.
Do \(y\) và \(y-1\) có 1 số chẵn và 1 số lẻ nên số chẵn sẽ là ước của \(x\) còn số lẻ là ước của \(x^2+x+1\).
Tức là có 2 trường hợp: \(x=4y\) và \(x=4\left(y-1\right)\).
Trường hợp 2 ngược lại.
Tới đây bạn tự giải được nha.
\(x\left[1+x+x^2\right]=4y\left[y-1\right]\)
\(\Leftrightarrow x^3+x^2-4y^2+x+4y=0\)
\(\Leftrightarrow x^2\left[x+1\right]+x-4y^2+4y=0\)
\(\Leftrightarrow\Delta=b^2-4ac=1-16xy+16xy^2-16y+16y^2\)
\(\Rightarrow\orbr{\begin{cases}x1=\frac{-1+\sqrt{1-16xy+16xy^2-16y+16y^2}}{2x+2}\\x2=\frac{-1-\sqrt{1-16xy+16xy^2-16y+16y^2}}{2x+2}\end{cases}}\)
đến đây tự làm tiếp nhé
\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y\right)=3+2\left(x+y+1\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y-2\right)=3\)
Từ đây bạn xét các trường hợp và giải ra nghiệm.