K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2018

Ta có:\(\left(\frac{28}{27}-\frac{29}{89}+\frac{30}{89}\right)\left(\frac{1}{3}+\frac{1}{2}-\frac{5}{6}\right)\)

\(=\left(\frac{28}{27}-\frac{29}{89}+\frac{30}{89}\right).\left(\frac{2}{6}+\frac{3}{6}-\frac{5}{6}\right)\)

\(\left(\frac{28}{27}-\frac{29}{89}+\frac{30}{89}\right).0\)

\(=0\)

18 tháng 3 2018

Đặt A = 28/87 - 29/89 + 30/89 

Ta có : 

   A    . ( 1/3 + 1/2 - 5/6 ) 

= A . ( 2/6 + 3/6 - 5/6 ) 

= A . ( 5/6 - 5/6 ) 

= A . 0 

= 0 

Tham khảo nha !!! Chúc học tốt !!! 

12 tháng 4 2022

81/10

12 tháng 4 2022

refer

1/2+5/6+11/12+19/20+29/30+41/42+55/56+71/72+89/90
1-1/2+1-1/6+1-1/12+1-1/20+1-1/30+1-1/42+1-1/56+1-1/72+1-1/90
9 – (1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90)
9 –[1/(1x2)+1/(2x3)+1/(3x4)+1/(4x5)+1/(5x6)+1/(6x7)+1/(7x8)+1/(8x9)+1/(9x10)] 
9 – ( 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10) 
9 – (1 – 1/10) = 9 – 9/10 = 81/10

\(A=1-1-\dfrac{5}{6}+1+\dfrac{7}{12}-1-\dfrac{9}{20}+1+\dfrac{11}{30}-1-\dfrac{13}{42}+1+\dfrac{15}{56}-1-\dfrac{17}{72}+1+\dfrac{19}{90}\)

\(=1-\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}+\dfrac{1}{10}\)

=1/2+1/10

=5/10+1/10=6/10=3/5

5 tháng 11 2021

1 kết quả thôi nha

7 tháng 5 2016

\(M=\frac{1}{2}+\frac{5}{6}+...+\frac{89}{90}=1-\frac{1}{2}+1-\frac{1}{6}+...+1-\frac{1}{90}\)

\(=9-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\right)\)

\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\right)\)

\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(=9-\left(1-\frac{1}{10}\right)\)

\(=8+\frac{1}{10}\)

\(=\frac{81}{10}\)

7 tháng 5 2016

cái này lớp 5 mk  cx làm được,81/10 chắc

7 tháng 5 2016

\(=\frac{8}{10}\)

7 tháng 5 2016

\(M=\frac{1}{2}+\frac{5}{6}+...+\frac{89}{90}=1-\frac{1}{2}+1-\frac{1}{6}+...+1-\frac{1}{90}\)

\(=9-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\right)\)

\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\right)\)

\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(=9-\left(1-\frac{1}{10}\right)\)

\(=8+\frac{1}{10}\)

\(=\frac{81}{10}\)

9 tháng 7 2017

Ta có: \(A=1.3+2.4+3.5+4.6+...+99.101+100.102\)

\(A=1.\left(1+2\right)+2.\left(2+2\right)+3.\left(3+2\right)+4.\left(4+2\right)+....+99.\left(99+2\right)+100.\left(100+2\right)\)

\(A=\left(1^2+2^2+3^2+4^2+...+99^2+100^2\right)+\left(2+4+6+8+...+198+200\right)\)Đặt \(B=1^2+2^2+3^2+4^2+5^2+...+99^2+100^2\)

\(\Rightarrow B=\left(1^2+2^2+3^2+4^2+5^2+...+99^2+100^2\right)-2^2.\left(1^2+2^2+3^2+4^2+5^2+....+49^2+50^2\right)\)Tính dãy tổng quát \(C=1^2+2^2+3^2+4^2+5^2+...+n^2\)

\(C=1\left(0+1\right)+2\left(1+1\right)+3.\left(2+1\right)+4.\left(3+1\right)+5\left(4+1\right)+...+n\left[\left(n-1\right)+1\right]\)

\(C=\left[1.2+2.3+3.4+4.5+...+\left(n-1\right).n\right]+\left(1+2+3+4+5+....+n\right)\)

\(C=n.\left(n+1\right).\left[\left(n-1\right):3+1:2\right]=n.\left(n+1\right).\left(2n+1\right):6\)

Áp dụng vào B ta được:

\(B=100.101.201:6-4.50.51.101:6=166650\)

\(\Rightarrow A=166650+\left(200+2\right).100:2\)

\(\Rightarrow A=166650+10100=176750\)

Vậy A = 176750

Chúc bạn học tốt!!

1 tháng 3 2019

bn ơi đây là cả cái tổng đó chia cho 89 or 49/89???

1 tháng 3 2019

Cả hiệu nhé bạn !!!

29 tháng 6 2016

1-1/2+1-1/6+1-1/12+1-1/20+1-1/30+1-1/42+1-1/56+1-1/72+1-1/90 

= 9 – (1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90) 

= 9 – [1/(1x2)+1/(2x3)+1/(3x4)+1/(4x5)+1/(5x6)+1/(6x7)+1/(7x8)+1/(8x9)+1/(9x10)]  

= 9 – ( 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10)   

= 9 – (1 – 1/10)

= 9 – 9/10

= 81/10.

k mình nha

29 tháng 6 2016

\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+...+\frac{89}{90}\)

\(=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+...+\left(1-\frac{1}{90}\right)\)

\(=\left(1-\frac{1}{1.2}\right)+\left(1-\frac{1}{2.3}\right)+\left(1-\frac{1}{3.4}\right)+...+\left(1-\frac{1}{9.10}\right)\)

\(=\left(1+1+1+...+1\right)-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)\)

             có 9 số 1

\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(=9-\left(1-\frac{1}{10}\right)\)

\(=9-\frac{9}{10}\)

\(=\frac{81}{10}\)