K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2021

\(\sqrt{16-2\sqrt{55}}=\sqrt{16-2\sqrt{11.5}}\)

\(=\sqrt{\left(\sqrt{11}\right)^2-2\sqrt{11.5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)^2}\)

\(=\left|\sqrt{11}-\sqrt{5}\right|=\sqrt{11}-\sqrt{5}\)vì \(\sqrt{11}-\sqrt{5}>0\)

√16−2√55=√11−2√11⋅5+516−255=11−211⋅5+5

=√(√11−√5)2=√11−√5

đây nhé

25 tháng 9 2021

1)
\(=\sqrt{\left(\sqrt{11}\right)^2-2.\sqrt{11}.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}=\sqrt{11}-\sqrt{3}\)
2)
\(=\sqrt{\left(\sqrt{7}\right)^2-2.\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}=\sqrt{7}-\sqrt{5}\)
3)
\(=\sqrt{\left(\sqrt{11}\right)^2-2.\sqrt{11}\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)}=\sqrt{11}-\sqrt{5}\)
4)
\(=\sqrt{3^2-2.3.\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)
5)
\(=\sqrt{3^2-2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}=\sqrt{\left(3-2\sqrt{2}\right)^2}=3-2\sqrt{2}\)

 

\(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\dfrac{\sqrt{21}}{7}\)

9 tháng 8 2017

a)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)

\(pt\Leftrightarrow\sqrt{3x^2+6x+3+4}+\sqrt{5x^2+10x+5+9}=-x^2-2x+4\)

\(\Leftrightarrow\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+9}=-x^2-2x+4\)

\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}=-x^2-2x+4\)

Dễ thấy: \(\hept{\begin{cases}3\left(x+1\right)^2\ge0\\5\left(x+1\right)^2\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3\left(x+1\right)^2+4\ge4\\5\left(x+1\right)^2+9\ge9\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\sqrt{3\left(x+1\right)^2+4}\ge2\\\sqrt{5\left(x+1\right)^2+9}\ge3\end{cases}}\)

\(\Rightarrow VT=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge2+3=5\)

Và \(VP=-x^2-2x+4=-x^2-2x-1+5\)

\(=-\left(x^2+2x+1\right)+5=-\left(x+1\right)^2+5\le5\)

SUy ra \(VT\ge VP=5\Leftrightarrow x=-1\)

b)\(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\)

\(pt\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}-\sqrt{x-1}=1\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2-\sqrt{x-1}=1\)

..... giải nốt tiếp ra x=1

c)Sửa đề \(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)

ĐK:....

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{x-7}+\sqrt{9-x}\right)^2\)

\(\le\left(1+1\right)\left(x-7+9-x\right)=4\)

\(\Rightarrow VT^2\le4\Rightarrow VT\le2\)

Lại có: \(VP=x^2-16x+66=x^2-16x+64+2\)

\(=\left(x-8\right)^2+2\ge2\)

Suy ra \(VT\ge VP=2\) khi \(VT=VP=2\)

\(\Rightarrow\left(x-8\right)^2+2=2\Rightarrow x-8=0\Rightarrow x=8\)

28 tháng 10 2021

\(\sqrt{16-2\sqrt{55}}=\sqrt{11}-\sqrt{5}\)

=>a=11; b=5

=>a-b=6

25 tháng 6 2021

`A=(sqrtx-1)/(sqrtx+1)-(sqrtx+3)/(sqrtx-2)-(x+5)/(x-sqrtx-2)`

`đk:x>=0,x ne 4`

`A=((sqrtx-1)(sqrtx-2)-(sqrtx+3)(sqrtx+1)-x-5)/(x-sqrtx-2)`

`=(x-3sqrtx+2-x-4sqrtx-3-x-5)/(x-sqrtx-2)`

`=(-x-7sqrtx-6)/(x-sqrtx-2)`

`=(-(sqrtx+1)(sqrtx+6))/((sqrtx+1)(sqrtx-2))`

`=(-(sqrtx+6))/(sqrtx-2)`

25 tháng 6 2021

cảm ơn ạ

25 tháng 6 2021

`(sqrtx+2)/(sqrtx-3)-(sqrtx+1)/(sqrtx-2)-(3(sqrtx-1))/(x-5sqrtx+6)`

đk:`x>=0,x ne 4,x ne 9`

`=((sqrtx+2)^2-(sqrtx+1)(sqrtx+3)-3(sqrtx-1))/(x-5sqrtx+6)`

`=(x+4sqrtx+4-x-4sqrtx-3-3sqrtx+3)/(x-5sqrtx+6)`

`=(4-3sqrtx)/(x-5sqrtx+6)`

25 tháng 6 2021

thankkkkkkkkkkkkkk!!!!!!!!!!!!!!!!!

29 tháng 6 2016

Dễ ẹt : 

\(\sqrt{16-2\sqrt{55}}\)

\(=\sqrt{5-2\sqrt{5}\sqrt{11}+11}\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{11}\right)^2}\)

\(=\sqrt{5}-\sqrt{11}\)

24 tháng 10 2017

mk ko bt 123

28 tháng 8 2017

\(\left(\sqrt{x^2+16}-5\right)\)\(-3\left(x-3\right)-\left(\sqrt{x^2+7}-4\right)=0\)

\(\Leftrightarrow\frac{\left(\sqrt{x^2+16}-5\right)\left(\sqrt{x^2+16}+5\right)}{\sqrt{x^2+16}+5}\)\(-3\left(x-3\right)-\frac{\left(\sqrt{x^2+7}-4\right)\left(\sqrt{x^2+7}+4\right)}{\sqrt{x^2+7}+4}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{x^2+16}+5}-3-\frac{1}{\sqrt{x^2+7}+4}\right)=0\)

ben trong ngoac bn tu xu li nhe

\(\Rightarrow x=3\)