Cho tam giác ABC. O là một điểm nắm trong tam giác. CM (AB+AC+ BC)/2 < OA + OB + OC<AB + AC + CB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì OA=OB=OC
nên O là tâm đường tròn ngoại tiếp ΔABC
mà ΔABC đều
nên O là giao điểm của ba tia phân giác của các góc A,B,C
Ta có: OA + OB + OC = OA + OB + OC = (OA + OB) + OC = AB + OC < AB + BC + CA (vì OC < BC) Vậy ta có: OA + OB + OC < AB + BC + CA (1) Ta cũng có: OA + OB + OC = OA + OB + OC = (OA + OC) + OB = AC + OB < AB + BC + CA (vì OB < AB) Vậy ta có: OA + OB + OC < AB + BC + CA (2) Từ (1) và (2), ta có: OA + OB + OC < AB + BC + CA Tương tự, ta có: OA + OB + OC = OA + OB + OC = (OB + OC) + OA = BC + OA > 0A + OB + OC (vì BC > 0A) Vậy ta có: OA + OB + OC > 0A + OB + OC (3) Ta cũng có: OA + OB + OC = OA + OB + OC = (OA + OB) + OC = AB + OC > 0A + OB + OC (vì AB > 0A) Vậy ta có: OA + OB + OC > 0A + OB + OC (4) Từ (3) và (4), ta có: OA + OB + OC > 0A + OB + OC Vậy ta có: 0A + OB + OC < AB + BC + CA < OA + OB + OC
Ta có: AB < OA + OB (bất đẳng thức tam giác)
AC < OA + OC (bất đẳng thức tam giác)
BC < OB + OC (bất đẳng thức tam giác)
=> AB + AC + BC < 2 (OA + OB + OC) => \(\frac{AB+AC+BC}{2}< OA+OB+OC\)(1)
và OA + OB < BC + AC (kết quả của bài 17 SGK)
OB + OC < AB + AC (kết quả của bài 17 SGK)
OA + OC < AB + BC (kết quả của bài 17 SGK)
=> 2 (OA + OB + OC) < 2 (AB + AC + BC) => OA + OB + OC < AB + AC + BC (2)
Từ (1) và (2) => \(\frac{AB+AC+BC}{2}< OA+OB+OC< AB+AC+BC\)(đpcm)