K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2019

Bạn ơi thực ra với x^2+x+1=0 thì vô nghiệm trên R nhưng đề bài không cho x thuộc số thực nên:

(x-1)(x\(^n\)+x+1)=0

x\(^3\)-1=0

x\(^3\)=1

Với n chia hết cho 3 => n=3k

=> A= x\(^{3k}\)+\(\frac{1}{x^{3k}}\)= x\(^{3^k}\)\(\frac{1}{x^{3^k}}\)= 1\(^k\)+\(\frac{1}{1^k}\)=2

Với n không chia hết cho 3 

Đặt  n=3k+1 và n=3k+2

Với n= 3k+1 ta có

A=x\(^{3k+1}\)\(\frac{1}{x^{3k+1}}\)=x\(^{3k}\). x +\(\frac{1}{x^{3k}.x}\)= x+\(\frac{1}{x}\)=\(\frac{x^2+1}{x}\)=\(\frac{x^2+x+1-1}{x}\)=\(\frac{-x}{x}\)-1

Với n= 3k=2 trương tự ta có

A= -1

Vậy A=2 với x chia hết cho 3 A=-1 khi x ko chia hết cho 3

31 tháng 3 2018

x2+x+1=0

=>x2+2.1/2.x+1/4+3/4=0

=>(x+1/2)2+3/4=0,vô lý, không có x

Bài toán 2. Tính tỉ số , biết:Bài toán 3. Tìm x; y biết:a. . 25 – y2 = 8( x – 2009)b. x3 y = x y3  + 1997c. x + y + 9 = xy – 7.Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.Bài toán 5. Chứng minh rằng:Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x2 )2005Bài...
Đọc tiếp

Bài toán 2. Tính tỉ số \frac{A}{B}, biết:

Bài tập nâng cao Toán 7

Bài toán 3. Tìm x; y biết:

a. . 25 – y2 = 8( x – 2009)

b. xy = x y3  + 1997

c. x + y + 9 = xy – 7.

Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.

Bài toán 5. Chứng minh rằng:

Bài tập nâng cao Toán 7

Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x)2005

Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.

Bài toán 8. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.

Bài toán 9. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.

Bài toán 10. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).

Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.

Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.

làm ơn giúp mình 

1

10:

Vì n là số lẻ nên n=2k-1

Số số hạng là (2k-1-1):2+1=k(số)

Tổng là (2k-1+1)*k/2=2k*k/2=k^2 là số chính phương

11: 

n^3-n^2+2n+7 chia hết cho n^2+1

=>n^3+n-n^2-1+n+8 chia hết cho n^2+1

=>n+8 chia hết cho n^2+1

=>n^2-64 chia hết cho n^2+1

=>n^2+1-65 chia hết cho n^2+1

=>n^2+1 thuộc {1;5;13;65}

=>\(n\in\left\{0;2;-2;2\sqrt{3};-2\sqrt{3};8;-8\right\}\)

20 tháng 9 2019

\(x^2+x+1=0\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0>0\)(vô lí)

Bài này giải trên tập số thực ko đc, pk giải trên tập số phức, nhg đây là toán 7 mà, ko dám

20 tháng 9 2019

Ò :3 THx bn !!

26 tháng 9 2018

Có : \(x^2+x+1=0\)

\(x^2\ge0\)( với mọi x )

\(\Rightarrow x^2+x+1>0\)( với mọi x )
\(\Rightarrow x\)không tồn tại

20 tháng 9 2019

Câu hỏi của Trần Dương An - Toán lớp 7 - Học toán với OnlineMath

20 tháng 9 2019

Câu hỏi của Trần Dương An - Toán lớp 7 - Học toán với OnlineMath

20 tháng 9 2019

Câu hỏi của Trần Dương An - Toán lớp 7 - Học toán với OnlineMath

Bài toán 3. Tìm x; y biết:a. . 25 – y2 = 8( x – 2009)b. x3 y = x y3  + 1997c. x + y + 9 = xy – 7.Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x2 )2005Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1...
Đọc tiếp

Bài toán 3. Tìm x; y biết:

a. . 25 – y2 = 8( x – 2009)

b. xy = x y3  + 1997

c. x + y + 9 = xy – 7.

Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.

Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x)2005

Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.

Bài toán 8. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.

Bài toán 9. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.

Bài toán 10. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).

Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.

Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.

9
25 tháng 10 2021

:V lớp 6 mới đúng

25 tháng 10 2021

ahihi e ko bt 

5 tháng 9 2023

ck giúp mình với

 

Bài toán 3

a. 25 - y^2 = 8(x - 2009)

Ta có thể viết lại như sau:

y^2 - 8(x - 2009) + 25 = 0

Đây là phương trình bậc hai với hệ số thực.

Ta có thể giải phương trình này như sau:

y = (8x - 1607 ± √(8x - 1607)^2 - 4 * 1 * 25) / 2 y = (4x - 803 ± √(4x - 803)^2 - 200) / 2 y = 2x - 401 ± √(2x - 401)^2 - 100

Ta thấy rằng nghiệm của phương trình này là xấp xỉ 2009 và -2009.

Tuy nhiên, trong bài toán, x và y là số tự nhiên.

Vậy, nghiệm của phương trình này là x = 2009 và y = 0.

b. x^3 y = x y^3 + 1997

Ta có thể viết lại như sau:

x^3 y - x y^3 = 1997 x y (x^2 - y^2) = 1997 x y (x - y)(x + y) = 1997

Ta có thể thấy rằng x và y phải có giá trị đối nhau.

Vậy, nghiệm của phương trình này là x = y = 1997/2 = 998,5.

Tuy nhiên, trong bài toán, x và y là số tự nhiên.

Vậy, nghiệm của phương trình này là x = y = 998.

c. x + y + 9 = xy - 7

Ta có thể viết lại như sau:

x - xy + y + 16 = 0

Đây là phương trình bậc hai với hệ số thực.

Ta có thể giải phương trình này như sau:

x = (xy - 16 ± √(xy - 16)^2 - 4 * 1 * 16) / 2 x = (y - 4 ± √(y - 4)^2 - 64) / 2 x = y - 4 ± √(y - 4)^2 - 32

Ta thấy rằng nghiệm của phương trình này là xấp xỉ 8 và -8.

Tuy nhiên, trong bài toán, x và y là số tự nhiên.

Vậy, nghiệm của phương trình này là x = 8 và y = 12.

Bài toán 4

Ta có thể chứng minh bằng quy nạp.

Cơ sở

Khi n = 2, ta có:

x1.x2 + x2.x3 = 0

Vậy, x1.x2 + x2.x3 + ...+ xn.x1 = 0 khi n = 2.

Bước đệm

Giả sử rằng khi n = k, ta có:

x1.x2 + x2.x3 + ...+ xn.x1 = 0

Bước kết luận

Xét số tự nhiên n = k + 1.

Ta có:

x1.x2 + x2.x3 + ...+ xn.x1 = x1.x2 + x2.x3 + ...+ xn.x1 + xn.x1

Theo giả thuyết, ta có:

x1.x2 + x2.x3 + ...+ xn.x1 = 0

Vậy, xn.x1 = -(x1.x2 + x2.x3 + ...+ xn.x1) = 0.

Như vậy, ta có:

x1.x2 + x2.x3 + ...+ xn.x1   shareGoogle it
5 tháng 9 2023

???

bn lấy nó đâu ra dz batngo

20 tháng 9 2019

1. Câu hỏi của Trần Dương An - Toán lớp 7 - Học toán với OnlineMath