Cho a,b >0 va a +b +2ab = 12. Tim min cua P =\(\frac{a^2+ab}{2b+a}\)+\(\frac{b^2+ab}{2a+b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(12=a+b+2ab\ge2ab+2\sqrt{ab}\Rightarrow0< ab\le4\)
Chú ý: \(2ab=12-a-b\) . Do đó:
\(A=\frac{2a^2+2ab}{2a+4b}+\frac{2b^2+2ab}{4a+2b}\)
\(=\frac{2\left(a^2+4\right)+4-a-b}{2a+4b}+\frac{2\left(b^2+4\right)+4-a-b}{4a+2b}\)
\(\ge\frac{7a-b+4}{2a+4b}+\frac{7b-a+4}{4a+2b}=\frac{7\left(a-b\right)^2+108\left(4-ab\right)}{6\left(2a+b\right)\left(a+2b\right)}+\frac{8}{3}\ge\frac{8}{3}\)
P/s: Em chưa check lại đâu, anh tự check đi:D Và chú ý cái dấu "=" cuối cùng của em chỉ đúng khi a + b +2ab = 12.
Cách khác:
Dễ thấy \(0< ab\le4\) (như bài trên)
\(A-\frac{8}{3}=\frac{2\left(a-2\right)^2}{2a+4b}+\frac{2\left(b-2\right)^2}{4a+2b}+\frac{7\left(a-b\right)^2+108\left(4-ab\right)}{6\left(2a+b\right)\left(a+2b\right)}\ge0\)
P/s: Nếu bài trên đúng thì bài này đúng, bài trên sai thì bài này sai, vì bài này được suy ra từ bài trên:v