K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2023

help

 

1 tháng 4 2023

help me: tìm n biết 2^n + 3^n = 5^n với n E N

Y
23 tháng 6 2019

+ Ta có : \(n^5-n=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)

+ \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)là tích 5 số nguyên liên tiếp

\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮5\)

\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)⋮5\)

\(\Rightarrow n^5-n⋮5\)

+ \(n^3-n=\left(n-1\right)n\left(n+1\right)⋮3\)

\(B=\frac{n^5-n}{5}+\frac{n^3-n}{3}+\frac{7n}{15}+\frac{n}{5}+\frac{n}{3}\)

\(=\frac{n^5-n}{5}+\frac{n^3-n}{3}+\frac{15n}{15}\)

=> B là số nguyên

Y
23 tháng 6 2019

\(A=\frac{n^5+10n^4+35n^3+50n^2+24n}{120}\) \(=\frac{n\left[n^3\left(n+1\right)+9n^2\left(n+1\right)+26n\left(n+1\right)+24\left(n+1\right)\right]}{120}\)

\(=\frac{n\left(n+1\right)\left[n^3+9n^2+26n+24\right]}{120}\) \(=\frac{n\left(n+1\right)\left[n^2\left(n+2\right)+7n\left(n+2\right)+12\left(n+2\right)\right]}{120}\)

\(=\frac{n\left(n+1\right)\left(n+2\right)\left(n^2+7n+12\right)}{120}\) \(=\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)}{120}\)

+ \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)\)là tích 5 số nguyên liên tiếp\

\(\Rightarrow\left\{{}\begin{matrix}n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮3\\n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮5\end{matrix}\right.\) (1)

+ trong 5 số nguyên liên tiếp tồn tại ít nhất 2 số chẵn liên tiếp

\(\Rightarrow n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮8\) ( do tích 2 số chẵn liên tiếp chia hết cho 8 ) (2)

+ Từ (1) và (2) => \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮120\)

=> đpcm

+ \(C=\frac{n^3+3n^2+2n}{24}=\frac{n\left(n+1\right)\left(n+2\right)}{24}\)

+ \(n\left(n+1\right)\left(n+2\right)\) là tích 3 số nguyên liên tiếp

\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\) (3)

+ n và n + 2 là 2 số chẵn liên tiếp

\(\Rightarrow n\left(n+2\right)⋮8\Rightarrow n\left(n+1\right)\left(n+2\right)⋮8\) (4)

+ Từ (3) và (4) \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮24\)

=> C là số nguyên

26 tháng 7 2020

- giúp tớ phần b ạ?

26 tháng 7 2020

a) \(5\frac{4}{23}.27\frac{3}{47}+4\frac{3}{47}\left(-5\frac{4}{23}\right)\)

\(=5\frac{4}{23}\left(27\frac{3}{47}-4\frac{3}{47}\right)\)

\(=5\frac{4}{23}\left(27+\frac{3}{47}-4-\frac{3}{47}\right)\)

\(=5\frac{4}{23}.23\)

\(=\frac{119}{23}.23=119\)

28 tháng 10 2016

mai nhé