c/m: nếu a/b=c/d thì:
a, 5a+3b/5a-3b = 5c+3d/5c-3d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\left(k\ne0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\Rightarrow\dfrac{5a+3b}{5a-3b}=\dfrac{5.bk+3b}{5.bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\)(1)
\(\dfrac{5c+3d}{5c-3d}=\dfrac{5.dk+3d}{5.dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\)(2)
Từ (1) và (2) \(\Rightarrow\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
Lời giải:
Đặt $\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk$.
Khi đó:
$\frac{5a+3b}{5a-3b}=\frac{5bk+3bk}{5bk-3bk}=\frac{8bk}{2bk}=4(1)$
$\frac{5c+3d}{5c-3d}=\frac{5dk+3dk}{5dk-3dk}=\frac{8dk}{2dk}=4(2)$
Từ $(1); (2)$ suy ra điều phải chứng minh.
từ a/b = c/d => a/c = b/d => 5a/5c = 3b/3d
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)
từ: \(\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)áp dụng tính chất ta dc
\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)(đcpm)
ĐẶt \(\frac{a}{b}=\frac{c}{d}=x\Leftrightarrow a=bx;c=dx\)
thay vào vế trái ta có
\(\frac{5a+3b}{5a-3b}=\frac{5.b.x+3b}{5.b.x-3b}=\frac{b\left(5x+3\right)}{b\left(5x-3\right)}=\frac{5x+3}{5x-3}\) (1)
Thay vào vế phải ta có
\(\frac{5c+3d}{5c-3d}=\frac{5.d.x+3d}{5.d.x-3d}=\frac{d\left(5x+3\right)}{d\left(5x-3\right)}=\frac{5x+3}{5x-3}\) (2)
Từ (1) và (2) => ĐPCM
mk giải bài này nhé:
từ a/b = c/d => a/c = b/d => 5a/5c = 3b/3d
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)
từ: \(\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\) áp dụng tính chất của tỉ lệ thức ta được:
\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\) (đpcm)
Cho điểm A nằm ngoài đường thẳng d và có khoảng cách đến d bằng 2cm. lấy điểm B bất kì thuộc đường thằng d. Gọi C là điểm đối xứng với điểm A qua điểm B. Khi điểm B di chuyển trên đường thẳng d thì điểm C di chuyển trên đường nào ?
Bài giải:
Kẻ AH và CK vuông góc với d.
Ta có AB = CB (gt)
= ( đối đỉnh)
nên ∆AHB = ∆CKB (cạnh huyền - góc nhọn)
Suy ra CK = AH = 2cm
Điểm C cách đường thẳng d cố định một khoảng cách không đổi 2cm nên C di chuyển trên đường thẳng m song song với d và cách d một khoảng bằng 2cm.