K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2021

(Hình bạn tự vẽ)

a) Ta có: \(\dfrac{AB}{BC}=\dfrac{6}{9}=\dfrac{2}{3}\)

\(\dfrac{BC}{BD}=\dfrac{9}{6+7,5}=\dfrac{2}{3}\)

Xét ΔABC và ΔCBD có:

Góc B chung 

\(\dfrac{AB}{BC}=\dfrac{BC}{BD}\)\(\left(=\dfrac{2}{3}\right)\)

⇒ΔABC ∼ ΔCBD (c.g.c)

b) Theo câu a ta có: ΔABC ∼ ΔCBD 

⇒ \(\dfrac{AB}{AC}=\dfrac{CB}{CD}\)\(=\dfrac{6}{7,5}=\dfrac{9}{CD}\)

⇒ \(CD=\dfrac{7,5.9}{6}\)\(=\dfrac{45}{4}=11,25\)

c) Theo câu a ta có: ΔABC ∼ ΔCBD 

⇒ Góc BAC = góc BCD        (1)

Xét ΔBCD có: \(\dfrac{BA}{AD}=\dfrac{BC}{CD}\)

Hay \(\dfrac{6}{7,5}=\dfrac{9}{11,25}\)\(=\dfrac{4}{5}\)           

⇒ CA là phân giác góc BCD

⇒ Góc ACB= góc ACD          (2)

Từ (1), (2) ⇒ góc BAC = 2 góc ACB

a: Xét ΔABC và ΔCBD có

AB/CB=BC/BD

góc B chung

=>ΔABC đồg dạng với ΔCBD

b: ΔABC đồng dạng với ΔCBD

=>AC/CD=BC/BD=6/9=2/3

=>7/CD=2/3

=>CD=7:2/3=7*3/2=21/2(cm)

c: CF/FD=BC/BD

EA/CE=BA/BC

mà BC/BD=BA/BC

nên CF/FD=EA/CE
=>CF*CE=FD*EA

8 tháng 3 2021

cái này ở Qanda à

cảm ơn nhiều =)) 

 

a: Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/2=CD/3=(BD+CD)/(2+3)=8/5=1,6

=>BD=3,2cm; CD=4,8cm

b: Xét ΔDEB và ΔDCA có

góc DEB=góc DCA

góc EDB=góc CDA

=>ΔDEB đồng dạng với ΔDCA

Xét ΔABE và ΔADC có

góc AEB=góc ACD

góc BAE=góc DAC

=>ΔABE đồng dạng với ΔADC

c: ΔABE đồng dạng với ΔADC

=>AB/AD=AE/AC

=>AB*AC=AD*AE

d: góc ACB=góc AEB

=>ABEC nội tiếp

=>góc ABE+góc ACE=180 độ

17 tháng 7 2021

a) DB?, DC?

Ta có:\(\dfrac{DB}{DC}=\dfrac{AB}{AC}\)(tính chất đường phân giác)

\(\dfrac{DB}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)

Mặt khác \(\dfrac{DB}{3}=\dfrac{DC}{5}\)

\(\dfrac{DB}{3}=\dfrac{DC}{5}=\dfrac{DB+DC}{3+5}=\dfrac{BC}{8}=\dfrac{12}{8}=\dfrac{3}{2}\)

\(\dfrac{DB}{3}=\dfrac{3}{2}\\ \Rightarrow DB=\dfrac{3\times3}{2}=\dfrac{9}{2}=4.5\left(cm\right)\)

Và \(\dfrac{DC}{5}=\dfrac{3}{2}\\ \Rightarrow DC=\dfrac{3\times5}{2}=\dfrac{15}{2}=7,5\left(cm\right)\)

Vậy DB=4,5(cm), DC= 7,5 cm

24 tháng 10 2021

a: Xét ΔABD và ΔAED có 

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

Suy ra: DB=DE và \(\widehat{ABD}=\widehat{AED}\)

hay \(\widehat{DBF}=\widehat{DEC}\)

Xét ΔDBF và ΔDEC có 

\(\widehat{DBF}=\widehat{DEC}\)

DB=DE

\(\widehat{BDF}=\widehat{EDC}\)

Do đó: ΔDBF=ΔDEC