Cho tam giác nhọn ABC .Kẻ AH vuông góc với BC ( H thuộc BC ) .Vẽ AE vuông góc với AB và AE=AB (E và C khác phía đối với AC) .Kẻ EM và FN vuông góc với đường thẳng AH (M ,N thuộc AH ).EF cắt AH ở O. Chứng minh rằng O là trung điểm của EF
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
21 tháng 1 2019
b xem bài tương tự trong phần hình học nhé https://cunghocvui.com/danh-muc/toan-lop-7
27 tháng 11 2015
Bạn tự vẽ hình nhé!
a) Xét tam giác vuông ABH có: góc ABH + BAH = 90o
Lại có: góc EAM + BAH = 90o (do góc EAB = 90o)
=> góc ABH = EAM
Xét tam giác vuông ABH và EAM có: góc ABH = EAM ; cạnh AB = EA
=> tam giác vuông ABH = EAM (cạnh huyền - góc nhọn)
=> BH = AM ;AH = EM
Ta có HM = AM + AH = BH + EM
Tương tự, tam giác vuông ANF = CHA => AN = CH; NF = HA
Ta có: HN = HA + AN = NF + CH
b) Ta có: EM = NF ( = cùng = HA)
góc IEM = IFN (2 góc So le trong do FN // EM)
Mà góc FNI = IME (= 90o)
=> tam giác INF = IME ( g- c - g)
=> IN = IM => I là trung điểm của EF