C/m:
a4 + b4 \(\ge\)\(\frac{1}{8}\)với a + b > 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử đpcm là đúng , khi đó , ta có :
\(a^8+b^8+c^8\ge a^3b^3c^3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Leftrightarrow a^8+b^8+c^8\ge a^3b^3c^3.\frac{ab+bc+ac}{abc}=a^2b^2c^2\left(ab+bc+ac\right)\left(1\right)\)
Vì a ; b ; c > 0 , áp dụng BĐT phụ \(x^2+y^2+z^2\ge xy+yz+xz\) , ta có :
\(a^8+b^8+c^8\ge a^4b^4+b^4c^4+a^4c^4\ge a^2b^2.b^2c^2+b^2c^2.c^2a^2+a^2b^2.c^2a^2=a^2c^2b^4+a^2b^2c^4+a^4b^2c^2\)
\(=\left(abc^2\right)^2+\left(bca^2\right)^2+\left(acb^2\right)^2\ge abc^2.bca^2+bca^2.acb^2+abc^2.acb^2=a^3b^2c^3+b^3a^3c^2+c^3b^3a^2\)
\(=a^2b^2c^2\left(ab+bc+ac\right)\)
Nên : \(a^8+b^8+c^8\ge a^2b^2c^2\left(ab+bc+ac\right)\)
=> BĐT được c/m ( 2 )
Từ ( 1 ) ; ( 2 ) => Điều giả sử là đúng
=> ĐPCM
Ta có:
\(\dfrac{a^8+b^8+c^8}{a^3b^3c^3}\geq \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
\(\Leftrightarrow a^8+b^8+c^8\geq a^2b^2c^2(ab+bc+ac)(*)\)
Áp dụng BĐT AM - GM:
\(\left\{\begin{matrix} a^8+b^8\geq 2a^4b^4\\ b^8+c^8\geq 2b^4c^4\\ c^8+a^8\geq 2c^4a^4\end{matrix}\right.\Rightarrow a^8+b^8+c^8\geq a^4b^4+b^4c^4+c^4a^4\)
Tiếp tục áp dụng AM - GM:
\(a^8+b^8+a^4b^4+c^8\geq 4\sqrt[4]{a^{12}b^{12}c^8}=4a^3b^3c^2\)
\(b^8+c^8+b^4c^4+a^8\geq 4b^3c^3a^2\)
\(c^8+a^8+c^4a^4+b^8\geq 4c^3a^3b^2\)
Cộng lại: \(3(a^8+b^8+c^8)+(a^4b^4+b^4c^4+c^4a^4)\geq 4a^2b^2c^2(ab+bc+ca)\)
Mà \(a^8+b^8+c^8\geq a^4b^4+b^4c^4+c^4a^4\Rightarrow 4(a^8+b^8+c^8)\geq 4a^2b^2c^2(ab+bc+ac)\)
hay \(a^8+b^8+c^8\geq a^2b^2c^2(ab+bc+ac)\Rightarrow (*)\) (đúng)
Ta có đpcm
Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)
Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)
Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)
Bài 2: Thêm đk a,b,c >0.
Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.
Bài 3: Nó sao sao ấy ta?
a) Áp dụng Cauchy Schwars ta có:
\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi: a = b = c = 1
b) \(N=\frac{1}{a}+\frac{4}{b+1}+\frac{9}{c+2}\ge\frac{\left(1+2+3\right)^2}{a+b+c+3}=\frac{36}{6}=6\)
Dấu "=" xảy ra khi: x=y=1
Ta áp dụng bất đẳng thức phụ sau đây liên tiếp: \(x^2+y^2+z^2\ge xy+yz+zx\leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0.\)
Khi đó \(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\ge a^2b^4c^2+a^2b^2c^4+a^4b^2c^2\)
\(=a^2b^2c^2\left(a^2+b^2+c^2\right)\ge a^2b^2c^2\left(ab+bc+ca\right)\).
Vậy ta có \(a^8+b^8+c^8\ge a^2b^2c^2\left(ab+bc+ca\right)\to\frac{a^8+b^8+c^8}{a^3b^3c^3}\ge\frac{ab+bc+ca}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
a/ \(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(a=b\)
b/ \(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(a=b\)
c/ \(\Leftrightarrow a^2+2a< a^2+2a+1\)
\(\Leftrightarrow0< 1\) (hiển nhiên đúng)
d/ \(\Leftrightarrow m^2-2m+1+n^2-2n+1\ge0\)
\(\Leftrightarrow\left(m-1\right)^2+\left(n-1\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(m=n=1\)
e/ \(\Leftrightarrow1+\frac{a}{b}+\frac{b}{a}+1\ge4\)
\(\Leftrightarrow\frac{a^2+b^2}{ab}\ge2\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Ta D/m đc: \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\left(x^2+y^2\right)+xy\)
\(\Leftrightarrow\frac{1}{2}\left(x^2+y^2\right)-xy\ge0\)
\(\Leftrightarrow\frac{1}{2}\left(x^2+y^2\right)^2\ge0\left(\text{luon dung}\right)\)
Vậy: \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
Tương tự:
\(x^4+y^4\ge\frac{\left(x^2+y^2\right)^2}{2}=\frac{1}{2}\)
\(\Rightarrow x^4+y^4\ge\frac{1}{8}\)
Dấu "=" xảy ra khi <=> x = y = 1/2
Ta có: \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow2x^2+2y^2\ge x^2+y^2+2xy\)
\(\Leftrightarrow x^2+y^2-2xy\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)(đúng)
Áp dụng BĐT trên ta có:
\(a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(a+b\right)^4}{8}=\frac{1}{8}\)
Dấu "=" xảy ra khi a= b
Vậy dpcm