K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔACD có \(\widehat{ACD}\) là góc tù

nên AD là cạnh lớn nhất

Suy ra: AD>AC

hay AD>AB

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

b: ΔBAD=ΔBHD

=>DA=DH

mà DH<DC

nên DA<DC

c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có

DA=DH

AK=HC

=>ΔDAK=ΔDHC

=>góc ADK=góc HDC

=>góc HDC+góc KDC=180 độ

=>K,D,H thẳng hàng

14 tháng 6 2017

A B C D H

Hạ đường cao AH của tam giác ABC. => H nằm giữa B và C (1)

D thuộc tia đối của CB => C nằm giữa B và D (2)

Từ (1) và (2) => C nằm giữa H và D => HC<HD (3)

Mà AH là đơngf vuông góc => AC và AD là đường xiên (4)

Từ (3) và (4) => AC<AD (Quan hệ đường xiên hình chiếu). Mà AC=AB => AB<AD.

Vậy AB<AD.

a: Xét ΔCAD và ΔCED có

CA=CE

\(\widehat{ACD}=\widehat{ECD}\)

CD chung

Do đó: ΔCAD=ΔCED

b: Ta có:ΔCAD=ΔCED

=>\(\widehat{CAD}=\widehat{CED}\)

mà \(\widehat{CAD}=90^0\)

nên \(\widehat{CED}=90^0\)

=>DE\(\perp\)BC

c: ta có: ΔCAD=ΔCED

=>DA=DE

=>D nằm trên đường trung trực của AE(1)

ta có: CA=CE
=>C nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra CD là đường trung trực của AE

d: Ta có: ΔACD vuông tại A

=>CD là cạnh lớn nhất trong ΔACD

=>CD>DA

1: Xét ΔABC có AD là phân giác

nên BD/AB=DC/AC

mà AB<AC

nên BD<DC

2: ΔABC cân tại A

=>góc ACB<90 độ

=>góc ACN>90 độ

=>AC<AN

=>AB<AN

a: BC=8cm

BC>AC

=>góc A>góc B

b: XétΔABD có

AC vừa là đường cao, vừa là trung tuyến

=>ΔABD cân tại A

c: GB+2GC=GB+GA>AB