Cho hình vuông ABCD. Trên tia đối của tia CD lấy M (CM<CD),vẽ hình vuông CMNP ( P nằm giữa B và C), DP cắt BM tại H, MP cắt BĐ tại K.
a, chứng minh : DH vuông góc vs BM
b, tính Q=PC/BC+PH/DH+KP/MK
Giúp vs ạ!! Gấp lắm!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác DBC và BMC cừng vuông góc tại C có
CD=BC(gt)
PC=MC(gt)
do đó tam giác DBC=tam giác BMC(2 góc vuông)
=>góc BDC=góc BPH(đối đỉnh)
mà góc:BDC+DPC=\(90^0\)
=>BHP=\(90^0\)
=>DH vuống góc với BM
a: Xét tứ giác ABED có
góc BAD=góc ADE=góc BED=90 độ
nên ABED là hình chữ nhật
b: Xét tứ giác BMCD có
BM//CD
BM=CD
Do đo; BMCD là hình bình hành
c:
Gọi O là trung điểm của AE
góc AIE=90 độ
mà IO là trung tuyến
nên IO=AE/2=BD/2
Xét ΔIBD có
IO là trung tuyến
IO=BD/2
Do đó: ΔIBD vuông tại I
a, Cậu tự chứng minh nha ... Gợi ý Chứng minh tam giác KPB đồng dạng CPM theo trường hợp góc góc ( g-g)
=> Góc BKP=90 độ ... Xét tam giác DBM có BC là đường cao, MK là đường cao => DH cũng là đường cao trong tam giác
=> DH vuông góc với BM
b, có vẻ thiếu đúng không cậu ... Mình nghĩ mãi ko hiểu đề bài