K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2018

HFGBHGHFGHFGFGHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG

16 tháng 9 2017

Đặt $x=\sqrt[3]{3+2\sqrt{2}},y=\sqrt[3]{3-2\sqrt{2}}$
$\Rightarrow \left\{\begin{matrix} x^{3}+y^{3}=6\\xy=1 \end{matrix}\right.$
$\Rightarrow (x+y)^{3}=x^{3}+y^{3}+3xy(x+y)=6+3xy=3[1+1+(x+y)]> 3.3\sqrt[3]{1.1.(x+y)}$
(Vì x>1,y>0=>x+y>1)
Do đó: $(x+y)^{3}> 3^{2}.\sqrt[3]{x+y}$
$\Rightarrow (x+y)^{9}>3^{6}.(x+y)$
$\Rightarrow (x+y)^{8}>3^{6}$
=>đpcm

16 tháng 9 2017

Đặt $x=\sqrt[3]{3+2\sqrt{2}},y=\sqrt[3]{3-2\sqrt{2}}$
$\Rightarrow \left\{\begin{matrix} x^{3}+y^{3}=6\\xy=1 \end{matrix}\right.$
$\Rightarrow (x+y)^{3}=x^{3}+y^{3}+3xy(x+y)=6+3xy=3[1+1+(x+y)]> 3.3\sqrt[3]{1.1.(x+y)}$
(Vì x>1,y>0=>x+y>1)
Do đó: $(x+y)^{3}> 3^{2}.\sqrt[3]{x+y}$
$\Rightarrow (x+y)^{9}>3^{6}.(x+y)$
$\Rightarrow (x+y)^{8}>3^{6}$
=>đpcm

17 tháng 12 2023

\(\left(4-\sqrt{7}\right)^2=4^2-2\cdot4\cdot\sqrt{7}+7\)

\(=16-8\sqrt{7}+7=23-8\sqrt{7}\)

\(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot2+4}-\sqrt{5}\)

\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}\)

\(=\left|\sqrt{5}-2\right|-\sqrt{5}\)

\(=\sqrt{5}-2-\sqrt{5}=-2\)

\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}+1}\)

\(=\dfrac{\sqrt{3-2\cdot\sqrt{3}\cdot1+1}}{\sqrt{2}+1}\cdot\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\)

\(=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}+1}\cdot\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\)

\(=\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=\dfrac{3-1}{2-1}=2\)

\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right)\cdot\dfrac{1}{\sqrt{6}}\)

\(=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-\dfrac{6\sqrt{6}}{3}\right)\cdot\dfrac{1}{\sqrt{6}}\)

\(=\left(\dfrac{1}{2}\sqrt{6}-2\sqrt{6}\right)\cdot\dfrac{1}{\sqrt{6}}\)

\(=\dfrac{1}{2}-2=-\dfrac{3}{2}=-1,5\)

8 tháng 7 2019

+) \(\left(\sqrt{4}-\sqrt{3}\right)^2=4-2\sqrt{4\cdot3}+3=7-2\sqrt{7}=\sqrt{49}-\sqrt{48}\)

+) \(2\sqrt{2}\left(2-3\sqrt{3}\right)+\left(1-2\sqrt{2}\right)^2+6\sqrt{6}\)

\(=4\sqrt{2}-6\sqrt{6}+9-4\sqrt{2}+6\sqrt{6}\)

\(=9\)

+) Sửa : \(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)

\(=\sqrt{5-2\sqrt{5}\cdot\sqrt{3}+3}-\sqrt{5+2\sqrt{5}\cdot\sqrt{3}+3}\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)

\(=\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}\)

\(=-2\sqrt{3}\)

11 tháng 6 2016

a) \(\Leftrightarrow\left(\sqrt{3+\sqrt{5}}\right)^2\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)

\(\Leftrightarrow\sqrt{3+\sqrt{5}}\cdot\left(\sqrt{10}-\sqrt{2}\right)\sqrt{\left(3-\sqrt{5}\right)\cdot\left(3+\sqrt{5}\right)}=8\)

\(\Leftrightarrow\sqrt{\frac{6+2\sqrt{5}}{2}}\cdot\left(\sqrt{5}\sqrt{2}-\sqrt{2}\right)\sqrt{3^2-5}=8\).

\(\Leftrightarrow\sqrt{\frac{5+2\sqrt{5}+1}{2}}\cdot\sqrt{2}\cdot\left(\sqrt{5}-1\right)\cdot\sqrt{4}=8\)

\(\Leftrightarrow\frac{\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{2}}\cdot\sqrt{2}\cdot\left(\sqrt{5}-1\right)\cdot2=8\)

\(\Leftrightarrow\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)=4\Leftrightarrow\left(\sqrt{5}\right)^2-1=4\Leftrightarrow5-1=4\)Đúng -ĐPCM.

11 tháng 6 2016

Cậu giải dùm mình câu b luôn nhé! cảm ơn c! :)))))))