Tìm số tự nhiên n biết 2005 chia n dư 205; 1795 chia n dư 595
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với n = 0 thì n2005 + 2005n + 2005n = 02005 + 20050 + 2005.0 = 1 + 1 + 0 = 2 không chia hết cho 3, loại.
Với n = 1 thì n2005 + 2005n + 2005n = 12005 + 20051 + 2005.1 = 1 + 2005 + 2005 = 4011 chia hết cho 3.
Với n > 1 thì đều ra trường hợp không chia hết cho 3.
Vậy n = 1
ta xét;
(*)n=0=>n^2005+2005^n+2005n =0^2005+2005^0+2005x0=1+1+0=2 (không chia hết cho 3)
(*)n=1 =>n^2005+2005^n+2005n=1^2005+2005^1+2005x1=1+2005x2=4011(không chia hết cho 3)
(*)n>1 thi2 n^2005+2005^n+2005n sẽ không chia hết cho 3 Hay n=1
Gọi số cần tìm là a
\(\hept{\begin{cases}a=2005k+23\\a=200ll+32\end{cases}}\)( k;l \(\in\)N ( k;l) =1 ;k;l bé nhất )
\(\Rightarrow\hept{\begin{cases}2005k+23=2007l+32\\2005k-9=2007l\end{cases}}\)
\(\Rightarrow\frac{2005k-9}{2007}=l\)
Vì l là số tự nhiên
\(\Rightarrow2005k-9⋮2007\)
\(\Rightarrow2005k-9\in B\left(2007\right)\)
\(\Rightarrow2005k-9=2007\)
\(\Rightarrow2005k=2016\)
\(\Rightarrow k=\frac{2016}{2005}=1,0....\)( chắc vại :3 )
Bài 10:
\(ƯCLN\left(a,b\right)=14\Leftrightarrow\left\{{}\begin{matrix}a=14k\\b=14q\end{matrix}\right.\left(k,q\in N\text{*}\right)\\ ab=5488\Leftrightarrow196kq=5488\\ \Leftrightarrow kq=28\)
Mà \(\left(k,q\right)=1\Leftrightarrow\left(k;q\right)\in\left\{\left(4;7\right);\left(7;4\right);\left(1;28\right);\left(28;1\right)\right\}\)
\(\Leftrightarrow\left(a;b\right)\in\left\{\left(56;98\right);\left(98;56\right);\left(14;392\right);\left(392;14\right)\right\}\)
Bài 12:
\(n+20⋮n+5\\ \Leftrightarrow n+5+15⋮n+5\\ \Leftrightarrow n+5\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)
Mà \(n\in N\Leftrightarrow n+5\in\left\{5;15\right\}\)
\(\Leftrightarrow n\in\left\{0;10\right\}\)
Từ đề bài \(\Rightarrow205< n< 595\) (*)
\(2005-205=1800⋮n\)
\(1795-595=1200⋮n\)
=> n là ước chung của 1800 và 1200 thoả mãn (*)
Bạn tự tìm nhé
Xin lỗi!
\(n>595\)
mà UCLN(1800;1200)=600 => n=600